
LSync: A Universal Event-synchronizing Solution
for Live Streaming

Yifan Xu, Fan Dang∗, Rongwu Xu, Xinlei Chen, Yunhao Liu
Tsinghua University

{xuyifan20, xrw18}@mails.tsinghua.edu.cn, {dangfan, yunhao}@tsinghua.edu.cn, chen.xinlei@sz.tsinghua.edu.cn

Abstract—The widespread of smart devices and the devel-
opment of mobile networks brings the growing popularity of
live streaming services worldwide. In addition to the video
and audio transmission, a lot more media content is sent to
the audiences as well, including player statistics for a sports
stream, subtitles for living news, etc. However, due to the diverse
transmission process between live streams and other media
content, the synchronization of them has grown to be a great
challenge. Unfortunately, the existing commercial solutions are
not universal, which require specific server cloud services or
CDN and limit the users’ free choices of web infrastructures.
To address the issue, we propose a lightweight universal event-
synchronizing solution for live streaming, called LSync, which
inserts a series of audio signals containing metadata into the
original audio stream. It brings no modification to the original
live broadcast process and thus fits prevalent live broadcast
infrastructure. Evaluations on real system show that the proposed
solution reduces the signal processing delay by at most 5.62% of
an audio buffer length in mobile phones and ensures real-time
signal processing. It also achieves a data rate of 156.25 bps in a
specific configuration and greatly outperforms recent works.

Index Terms—live streaming, synchronization, chirp signal

I. INTRODUCTION

With the proliferation of mobile networks [1], [2], there has
been a recent surge in popularity for live streaming. Streamers
share the live events by recording them with a camera and
a microphone, uploading them to the streaming server, and
publishing them to websites for people to watch. As long as the
Internet is accessible, viewers are able to enjoy the live streams
using computers and mobile devices at any time and anywhere.
In 2020 and 2021, a large number of people were kept at
home due to the COVID-19, which contributes to the growing
popularity of live streaming. Live commerce helps sustain
a great many business companies, allowing them to interact
with audiences and sell products online. Live education also
provides a new teaching platform outside the classroom for
teachers and students to communicate.

With the new applications based on live streaming, much
more media content, including slides, quizzes, and subtitles,
is transmitted to audiences in live streaming services. Typical
examples include updating player statistics for a sports stream,
displaying product details for a live shopping stream, sharing
slides with students for a live education stream, and sending
questions for a live quiz stream. The synchronization among
the video stream and all other content is of significant value.
Take Rain Classroom [3], a widely used online education

* Corresponding Author

platform, as an example, a teacher can send slides as well
as quizzes to students while hosting the live streaming. If the
page-turning of slides is inconsistent with the video, students
may fail to follow the lesson. While in HQ Trivia [4], a live
trivia video game, the out-of-sync time between the live and
the quiz would significantly impact the user experience.

Unfortunately, unsynchronization between live streams and
other media content is very likely to occur. This is because live
stream and other content are transmitted through different pro-
tocols and network channels (i.e., the streaming channel and
the information channel) with different transmission delays.
Moreover, the encoding, transcoding, and distributing process
also introduces extra delays [5].

There are various solutions to solve the synchronizing issue.
The simplest solution is to add a fixed time delay to the
information channel. However, the delay is hard to estimate,
and the network fluctuation would weaken its effectiveness. A
solution introduced by Alibaba Cloud is to insert several SEI
frames, which contain various types of data during the encod-
ing process, somehow representing time-related information
when performs H.264 encoding for video stream [6] and the
information is recovered for synchronization as soon as the
video gets decoded. Amazon IVS allows users to use ID3
tags [7] to embed metadata [8]. However, this technique adds
metadata when encoding, thus requires additional procedures
running on the server-side. It also requires the proprietary
Amazon IVS player to extract the embedded information.
These commercial solutions suffer a significant limitation:
they rely on their specific infrastructures and proprietary soft-
ware. Users (e.g., start-ups) cannot choose the cloud service
providers freely. They may have to pay extra to use a specific
commercial solution instead of an open-source or a standard
public-cloud solution.

This paper aims to develop a universal method, named
LSync, to achieve event-synchronizing for live streaming.
LSync is designed to be compatible with general streaming
software and infrastructure, including various CDN platforms
and mainstream streaming techniques. The key idea of LSync
is to insert modulated audio signals with metadata into the
original audio stream, which is demodulated on the audience
to help synchronization. To have a good synchronization
performance while keeping the quality of user experience, the
proposed synchronization scheme should meet the following
requirements: 1) The inserted modulated audio signals do not
interweave with the original audio; 2) The inserted modulated

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 2188

Fig. 1: System architecture

audio signals are not cut off by Advanced Audio Coding
(AAC) encoder; 3) The inserted modulated audio signals are
able to resist the interference, i.e., be demodulated under a
low signal-to-noise ratio (SNR) on the audience side; 4) The
demodulation and synchronization process on the audience
side should be real-time.

To better understand the concept of LSync, we provide a
brief overview of how it works at a high level in Fig. 1. LSync
periodically inserts modulated audio signals containing meta-
data, which helps the synchronization, into the original audio
stream at the streamer side. After the modulation, the stream
goes through encoding, transcoding, network transmitting, and
finally decoding at the client-side, i.e., the web browser. Before
the stream is played, the mixed audio signal is identified, and
then the embedded metadata is extracted. Finally, the inserted
signal is filtered out from the audio stream to ensure that no
disturbance is made to the audience.

To meet the requirements mentioned above, we design our
synchronization scheme as follows. To avoid the inserted
modulated data being cut off by AAC encoder and prevent it
from interweaving with the original audio, carrier frequencies
between 14 kHz and 15 kHz is selected. To resist the inter-
ference for easy demodulation under a low SNR, we design
a chirp spread spectrum (CSS) based method for modulation.
Using CSS [9], we can keep the power of embedded signals
at a low level so that not only can the data be successfully
recovered during signal analysis, but the disturbing signal can
be easily suppressed as well. To realize real-time processing
on the audience side, we design an efficient algorithm, which
performs the fast Fourier transform (FFT) just for once with
a little more calculation in each chirp-length time window to
locate and synchronize data packets and decode data, ensuring
real-time signal processing.

The contributions of this paper are three folds.
• We design a lightweight and universal event-synchronizing

framework. This framework requires no modification to
traditional live streaming infrastructure. It also applies to
multiple streaming protocols on both desktop and mobile
devices.

• We propose to embed metadata into acoustic CSS signals,
which not only brings no interference to audiences but is
also easy to detect and demodulate for synchronization.

• We implement our system, LSync, on various kinds of
devices. The extensive experiments show that the audio
signal process is fast and real-time, which takes up less than
6% in average of the audio buffer length among all tested
devices and brings at most 96ms time delay. In addition,
LSync provides a data rate of 156.25 bps at best, which
outperforms recent works.

The rest of the paper is organized as follows. Section II
analyzes several factors that impact our choice of acoustic
channels and signal modulation. Section III presents the CSS
technique and how we leverage it to design inserted packets.
We introduce an algorithm for packet synchronization and
demodulation in Section IV Through extensive experimental
results, we evaluate the performance of the proposed system
in Section V. In Section VI, we review the previous work
and briefly evaluate the performance. Finally, we conclude the
paper in Section VII.

II. CHANNEL AND MODULATION SELECTION

(a) Audio power attenuation

(b) Audio frequency bias

Fig. 2: The impact of OBS Studio’s AAC encoder on macOS
and Windows on audio power attenuation and frequency bias
with different frequencies.

The design of hidden acoustic signals should be inaudible
and easy to be demodulated, which is highly dependent on the
selection of the acoustic carrier frequencies and the modulation
method.

2189

A. Carrier Frequencies Selection

As we discussed in the introduction, we should select a
proper audio band for embedding the information. The selected
band should neither be filtered out by an AAC encoder with
a commonly used bit rate nor interfere with content audio.

AAC encoder. AAC is the de facto audio codec of live
streaming [10]. The first thing we need to figure out is how the
AAC encoder influences our carrier channel selection. In our
experiment, we choose a widely used live-streaming broadcast
tool called OBS Studio [11]. The audio should pass its AAC
encoder before it is transmitted through the network. The bit
rate of the AAC encoder is the most critical parameter, which
determines the audio quality. The higher the bit rate is, the
better the audio quality will be. However, the more network
resources the audio will cost. What is more, the bit rate also
determines the bandwidth, i.e., the low-pass filter cutoff, of
the encoded audio. This is because the codec reduces the
audio bandwidth and modifies the stereo image to keep the
most audible frequencies [12]. To study how an AAC encoder
affects the audio bandwidth, we utilize OBS Studio in both
macOS and Windows with a bit rate of 96k, a commonly
used one for live streaming, to broadcast several single tone
audio clips with different frequencies ranging from 10 kHz
to 18.5 kHz. Next, we collect the received audio clips and
analyze their power decline. Fig. 2a shows that the remained
bandwidths are below 15.5 kHz and 15 kHz on macOS and
Windows, respectively. To further reveal the AAC encoder’s
influence on audio with different frequencies, we analyze
received audio clips with the FFT, find the frequency with
maximized power, and calculate the frequency bias towards
its original single tone frequency. As shown in Fig. 2b, the
audio clips with a frequency higher than 15.5 kHz on macOS
and 15 kHz on Windows suffer the frequency bias after AAC
encoding. It concludes that only the channels with frequency
lower than 15 kHz are available for us to embed data since
audio with higher frequency is likely to be filtered out by the
AAC encoder, and the embedded data in a higher frequency
channel would be lost.

The content audio. Another critical requirement of the em-
bedded acoustic signal is that it should not interweave with the
original audio. This prevents the content from being jammed
by the embedded signals and also makes the demodulation
easier. Previous study [13] shows that the frequencies of the
ambient sound in daily life usually lie below 14 kHz.

Based on the above observations, the best choice is the band
between 14 kHz and 15 kHz. However, this is an audible band,
making the modulation method selection quite challenging.
The selection of the modulation method is discussed in the
following section.

B. Modulation Method Selection

Since the embedded signals are audible, the selected mod-
ulation method should ensure that these signals are easy to
cancel. Besides, even though the ambient sound hardly lies in

(a) Baseline chirp symbol (b) Shifted chirp symbol

Fig. 3: CSS symbol spectrogram

the band between 14 kHz and 15 kHz, the interference is still
possible. Therefore, the modulation method should also resist
the potential interference [14].

To cancel the embedded signals, we leverage the Web
Audio API [15], a high-level Web API for processing and
synthesizing audio in web applications, to filter the au-
dio before playing. Specifically, Web Audio API provides
the BiquadFilterNode [16], a processor implementing
very common low-order filters. Although we can use the
BiquadFilterNode to add a lowpass filter to attenuate
the frequencies above the cutoff, i.e., 14 kHz, it is infeasible
to wipe out the embedded signals between 14 kHz and 15 kHz.
This is because the filter is a standard second-order resonant
lowpass filter with 12dB/octave roll-off instead of an ideal
lowpass filter. For instance, supposing that the cutoff frequency
is set to 7 kHz, an audio clip with a frequency of 14 kHz would
have − log2

(
14kHz
7kHz

)
× 12dB = −12dB attenuation instead of

being entirely eliminated. Thus, even with the help of the
BiquadFilterNode, we still have to limit the power of
embedded signals to quite a low level so that it could be
inaudible after it gets attenuated by the filter.

Based on the above discussion, we need a modulation
method that ensures that the modulated signals are able to be
demodulated at a low power level and resilient to interference.
In LSync, we select the chirp spread spectrum (CSS) technique
to modulate data. CSS uses wideband linear frequency mod-
ulated chirp pulses to encode information, making it robust
to channel noise [17] and easy to be demodulated even if its
power level stays low [18]–[20].

III. CSS SYMBOL AND FRAME DESIGN

Based on the CSS technique, we propose to encode meta-
data into chirps during the signal modulation process and form
a complete packet with other significant frame components.
The encoding and frame designs are elaborated on below.

A. CSS Symbol Design

The CSS technique is ideal for applications that require low
power usage and need relatively low data rates in digital com-
munications. Unlike previous works [13], [21], [22], which use
chirp-BOK or QOK to encode data, we leverage an approach,
which manipulates the starting frequency offset of a baseline
up-chirp to form various shaped chirps and represent different

2190

Fig. 4: The structure of the embedded packet

numbers to further improve the data rate and speed up the
demodulation process.

As shown in Fig. 3a, the frequency of a baseline up-chirp
increases linearly from fc = 14 kHz, the lower bound of the
band we select, to the upper bound fc + BW , where BW
represents the bandwidth. Suppose that the duration of a chirp
is T (0.256 s as the example in Fig. 3). Then the time-domain
function for baseline up-chirp can be expressed as

C(t) = sin

(
2π(fc+

BW

2T
t) · t

)
.

In order to make the alignment of a packet with the time
window more precisely during the demodulation process,
which would be elaborated in Section IV, we set T to be
a power of 2ms including 32ms, 64ms, 128ms, and 256ms.

Given the frequency shift f of a baseline up-chirp,
the time-domain function for the resulted symbol is
sin

(
2π(fc+ f + BW

2T t) · t
)
. Then all the frequencies higher

than fc+BW will be folded back to fc as shown in Fig. 3b.
We introduce a parameter BN , which is a positive integer
and represents how many bits a chirp is able to encode. In
our design, there are 2BN different equally-distributed shifted
starting frequencies, which results in 2BN uniformly shaped
up-chirps, and each one represents a unique number so that one
specific up-chirp represents an BN bits number. In particular,
the baseline up-chirp shown as Fig. 3a represents 0. And a
shifted chirp whose starting frequency is fc + f represents
the number n, where

n× BW

2BN
= f. (1)

Thus for the chirp shown in Fig. 3b where its frequency shift
is half of the bandwidth, it represents 2BN−1.

With T and BN , we can calculate the bit rate of chirps as

Rb =
BN

T
bps.

Therefore, the smaller T is, and the greater BN is, the better
the data rate will be. However, the decrease of T and increase
of BN results in lower reception sensitivity, which means that
at the same reception power level, the chirp with a lower T
and a larger BN may be unable to be demodulated while the
chirp with a larger T and a lower BN can. The details are
explained in Section V. Hence, we have to select a proper T
and BN setting to meet the data rate requirements and the
need for demodulation under low embedded signal power.

To demodulate, we leverage a baseline down-chirp, where
the frequency sweeps decreasingly and its time-domain func-
tion is C∗(t) = sin

(
2π(BW − BW

2T t) · t
)
. By multiplying a

Fig. 5: Packet synchronization process

baseline down-chirp, each shifted up-chirp is concentrated on
a single frequency, and the result can be calculated as

sin
(
2π(fc+ f +

BW

2T
t) · t

)
sin

(
2π(BW − BW

2T
t) · t

)
=

1

2

[
cos

(
2π(fc+ f +BW) · t

)
− cos

(
2π(fc+ f −BW +

BW

T
t) · t

)]
,

where the first part of the result is centralized on a specific
frequency fc+f+BW while the second part spread in a wide
frequency band. With the help of the FFT, we can find a peak
in the spectrum, analyze the frequency shift f , and decode the
data that the shifted up-chirp indicates.

B. Frame Design

As shown in Fig. 4, a whole packet frame contains two
baseline up-chirps as the preamble, two baseline down-chirps
as the start of frame delimiter (SFD), several shifted up-chirps
as payload, and two shifted up-chirps for CRC-8 symbols.

Preamble and SFD. At the beginning of a packet, the pream-
ble will be used for packet detection. We use two baseline
up-chirps for the preamble due to the trade-off between the
detection reliability and the efficiency. Using more than two

2191

Fig. 6: Align chirps of the preamble with time window

baseline up-chirps would make the detection more reliable
but bring more redundancy to a packet. In comparison, if we
only set one baseline up-chirp as the preamble, false-positive
detection is much more likely to occur since a single baseline
up-chirp may appear in the payload or the CRC part other
than preamble. According to our experiments, two adjacent
baseline up-chirps are much less common.

To further confirm that a new packet is found as well as to
separate the preamble and payload, we add the start of frame
delimiter (SFD), two continuous baseline down-chirps after the
preamble because the down-chirp does not exist in any other
part of a packet. Using two instead of one single down-chirp
is to increase the robustness.

Payload. The payload consists of a few shifted up-chirps,
depending on how much message the packet aims to deliver
and the BN setting. According to our experiment in Section V,
BN should be between 4 and 8 to guarantee an acceptable
data rate between 31.25 bps to 156.25 bps and the possibility
to demodulate the embedded signal. In LSync, we encode
timestamp into the payload, and the number of chirps to
encode hour, minute, second, and millisecond respectively
should depend on the BN setting. For instance, if the BN
is no less than 6, two chirps should be used to represent
milliseconds with one single chirp for hour, minute, and
second respectively.

CRC. To ensure the integrity of the payload, we use CRC-8
for bit error detection [23]. Since we set BN to be lower than
8 and greater than 4, we need to leverage two chirps to encode
a CRC-8 symbol.

IV. PACKET SYNCHRONIZATION AND DECODING

Before the audio stream is played, the embedded data
must be decoded on the audience side, which is the web
browser in LSync. The key point is how we can process
the signal in real-time with limited web browser resources. It
would be time-consuming and resource-consuming to leverage
similar approaches in recent work [13], [21], [22], since they
require storing a relatively long audio section that contains
at least one whole packet. We intend to process the audio
stream with a sliding time window whose length is the same
as a chirp’s to achieve real-time analysis and save storage
resources. The demodulation process consists of two main
parts: packet synchronization and decoding.

A. Packet Detection and Synchronization

The first aspect is to locate the exact start point of an
embedded packet in the audio stream. The process comprises

(a) FFT result of the first window (b) FFT result of the second window

Fig. 7: FFT result of two consecutive time windows for the
preamble, where two peaks share the same position

three steps: preamble detection, packet aligning, and SFD
check. Fig. 5 describes the detailed packet synchronization
process.

Preamble detection. The preamble, as the start section of
a packet, consists of two continuous baseline up-chirps. Thus,
in each of the two successive time windows, we multiply
a baseline down-chirp with the audio section, perform FFT
and find the peak to detect preamble. Even if the preamble is
misaligned with the time windows like the left part of Fig. 6,
the FFT results have the same peak position as shown in
Fig. 7(We transform the original FFT result to the frequency
domain) because half of the shifted chirp in the second window
is the same as the chirp in the first window in terms of the
frequency domain. If the two peak values exceed a threshold,
which means that chirps do exist and share the same peak
position after being multiplied with a down-chirp and FFT
operation in consecutive time windows, we consider it as a
part of a preamble, and then we use the peak position of the
second window to align the packet with time window.

Packet alignment. To align the packet, we need to calculate
how many sample points of the signal should be moved
forward so that each chirp of the signal could be aligned with
the time window. In the left part of Fig. 6, which shows the
misalignment, we express the starting frequency of the shifted
chirp in the second window as f ′, the starting frequency of a
baseline up-chirp as f0 while the total number of a baseline
up-chirp’s sample points as chirp n. chirp n equals T × fs,
where fs denotes the sample rate of the audio and T denotes
the duration of a chirp. The number of sample points to be
moved can be calculated as

n =
(f ′ − f0)× chirp n

BW
.

We multiply a baseline down-chirp with it and perform FFT
for the audio signal in the second time window. There are two
peaks as in Fig. 7b , and we select the greater peak position
of the original FFT result as id′, which representing the left
part of that shifted chirp and indicates its starting frequency.
Also, we make the same operation for baseline up-chirp and
there is only one peak in its FFT result. Let id0 be the single
peak position and fft n be the sample number of FFT. Note
that

(f ′ − f0) =
(id′ − id0)× fs

fft n
.

2192

Thus, n can be computed as

n =
(id′ − id0)× fs× fs× T

BW × fft n
.

To ensure the precision of alignment, the computation result
should be a non-negative integer. Consider that the configu-
ration we used in our experiment is fs = 48 kHz, BW =
1kHz and fft n should be an integer that is a power of 2
and no less than chirp n. Supposing that T is a power of
2ms and denoted as 2l × 10−3s, chirp n equals 2l+4 × 3.
Thus we set fft n to be 2l+6 and n can be recomputed as:
n = (id′ − id0) × 36, which is definitely an non-negative
integer. Otherwise, if T is not a power of 2ms and is like
100ms and chirp n equal 4800, fft n should be at least
8192 = 213. Then n equals (id′ − id0) × 225/8, which is
possibly not an integer if (id′ − id0) is not a multiple of 8.

By moving n sample points of the signal forward, we are
able to align the signal with the time window chirp by chirp.

SFD check To make sure that the consecutive two baseline
up-chirps we have found are exactly the beginning of a packet,
we should then examine whether the SFD follows them. Since
the packet has been aligned, similarly, we multiply a baseline
up-chirp with the audio signal of each time window, perform
the FFT, and find the peak. If the result is accurately the same
as a baseline down-chirp would produce in both windows, we
confirm that the SFD is found after the preamble and a new
packet is successfully discovered and aligned.

B. Packet Decoding

Once completing the SFD check, it is quite easy to decode
data buried in the packet. In each time window, we multiply a
baseline down-chirp with the shifted chirp, perform the FFT,
and find the peak. Let f be the starting frequency of the shifted
chirp and f0 be the starting frequency of the baseline up-chirp.
According to Eq. 1, we have

(f ′ − f0) = n× BW

2BN
,

where n is the encoded data. Let id be the greater peak position
in the FFT result of the specific shifted chirp and id0 be the
FFT result of a baseline up-chirp. Then n can be decoded as

n =
(id− id0)× fs× 2BN

fft n×BW
.

When we finish decoding the whole packet, the CRC code
appended to the payload should be used to validate whether
the payload is correctly received and decoded.

V. IMPLEMENTATION AND EVALUATION

As shown in Fig. 1, LSync consists of three main com-
ponents, the signal modulator at the streamer side, the live
streaming server for receiving and distributing the stream, and
the audio processing and demodulator at the audience side.
To evaluate the performance of the proposed method, these
components are implemented as follows.

Streamer side. On the streamer side, we leverage OBS
Studio to record live audio/video and push them to the
live streaming server through Real-Time Messaging Protocol
(RTMP) [24]. OBS Studio allows multiple audio inputs. There-
fore, we introduce a virtual audio cable with VB-Cable [25]
and generate the modulated signals to OBS Studio via this
cable. The modulated signals are generated following the
frame design, with the current timestamp as the payload.
The signals are generated every 5 s and then mixed with
the live audio and transmitted to the live streaming server
together. We set the sample rate to 48 kHz and the bit rate
of audio to 96 kHz, which are general settings for a daily live
broadcast. We also turn down the power of the virtual cable
to −62.5 dB, which is nearly the extreme limit for embedded
signal demodulation reliability through practice. Our system
does not hamper a normal live broadcast process, and it works
well in both macOS and Windows. A more user-friendly
software plug-in can further replace the virtual audio cable
for OBS Studio in the future.

Audience side. We develop a web application written in
JavaScript to process audio in real-time before being played on
the audience side. The audio is analyzed with Web Audio API.
We use MediaElementAudioSourceNode interface [26]
to access the audio from an HTML <video> element for later
processing. Then we leverage ScriptProcessorNode in-
terface [27] to handle the audio buffer. When the buffer gets
full, a callback function is invoked, where we demodulate the
signals as our design in Section IV. We use fft.js, an
implementation of Radix-4 FFT, to perform FFT operations in
signal processing. Lastly, we use the BiquadFilterNode
to filter the audio, and then it gets played. Since most modern
browsers support Web Audio, the application is available for
Google Chrome, Microsoft Edge, and Mozilla Firefox on Win-
dows and macOS. We also perform evaluations on Android
using Google Chrome and Mozilla Firefox. Unfortunately, due
to the bug of Webkit [28], Safari on both macOS and iOS is
not tested yet, but once the bug is fixed, this method should
work as expected.

Live streaming server. The live streaming server
is implemented using Node.js. With Node.js package
node-media-server [29], we launch an RTMP
server [24] to receive the live stream pushed by the
streamer. In addition, the server also outputs the stream with
various formats and protocols, including HTTP-FLV [30],
HLS [31], and DASH [32].

The rest of this section presents the experiment results.
The devices that we employ include a PC with an Intel Core
i7-10710U CPU running Windows 10, a MacBook with an
Intel Core i7-9750H CPU running macOS 11.4, and a Redmi
Note 8 Pro mobile phone with a Helio G90T CPU running
Android 10. Most experiments are conducted in a static indoor
office environment. The power of the virtual audio cable is set
to be −62.5 dB so that the embedded signal after processed
can be totally unaware of by audiences even in such a silent
environment.

2193

Fig. 8: Packet reception ratio under different BN and T
settings

Fig. 9: Data rate under different BN and T settings

A. Reception Accuracy

We first present the reception accuracy on the audience
side under different BN and T settings. We generate the
modulated packet every 5 s. Therefore, the longest T among
the experiments is set to 256ms. Supposing that T is greater
than 256ms, e.g., 512ms, the length of a total packet will be
over 5.63 s, longer than the sending interval. Meanwhile, to
simplify the encoding process, the lowest BN is set to 4 so
that two chirps are enough to encode CRC-8 for all cases.

Fig. 8 shows the relationship among packet reception ratio
(PRR), BN , and the chirp length. A too short chirp length T ,
e.g., 16ms, makes it impossible to decode. Instead, a longer
chirp length T results in a higher PRR. If a chirp with a longer
duration in time domain multiplies with a down-chirp, more
energy would be centralized on a shifted frequency after the
FFT, making it easier to be correctly demodulated under the
same low audio power level. Meanwhile, a large BN , e.g., 9,
is also not usable. A greater BN hampers the PRR because
it implies a finer division of the starting frequency for shifted
chirps, making it harder to distinguish the different shifted
frequencies during the demodulation process.

As a result, to ensure the reception reliability, we should set
T to be no less than 32ms and BN lower than 9.

B. Data Rate

In section III, we have shown that the data rate is pro-
portionate to BN and inversely proportional to T , and we
depict the relationship in Fig 9. Based on Fig 8 and Fig 9, we
summarize the greatest data rate that our system can provide
when PRR is greater than 95% in Table I. We list the result

TABLE I: Data rate under different BN and T settings with
a PRR over 95%

T (ms) 32 64 128 256

BN 4 5 7 8
Data rate (bps) 125.00 78.125 54.69 31.25

PRR 99% 99% 96% 98%

TABLE II: Data rate under different BN and T settings with
a PRR over 85%

T (ms) 32 64 128 256

BN 5 6 7 8
Data rate (bps) 156.25 93.75 54.69 31.25

PRR 88% 87% 96% 98%

when T ranges from 32ms to 256ms with the setting of BN
to achieve the data rate. To compare with our system, the
previous work in Tagscreen [13] reaches a data rate of 50 bps
with 2 kHz bandwidth, which is the most efficient one among
recent works. While LSync can provide a 125 bps data rate
that outperforms their performance when the chirp length is
32ms, and BN is 4. Besides, the bandwidth we could use is
1 kHz, only half of that in their implementation. What is more,
with a little sacrifice on reception reliability, we can boost the
data rate to 156.25 bps when the chirp length is 32ms, and
BN is 5 as shown in Table II.

It is worth noting that the selection of the parameters BN
and T should take the data we are to encode into account. For
instance, in LSync, it is optional to use T = 64ms, BN = 6
rather than the configuration with the greatest data rate where
the setting is T = 32ms, BN = 5. With the former
configuration, we can encode minute and second into one
chirp, respectively. While for the latter, two chirps are needed
respectively, which decreases the virtual data rate instead.

C. Versatility

Then, we discuss the versatility of our system. On the
streamer side, we evaluate the performance of LSync on
different operating systems with the configuration shown in
Table II. In these tests, we run the decoding algorithm on
Google Chrome. The results (shown in Fig. 10) indicate that
the streamer side implemented on macOS provides a slightly
better PRR performance compared to Windows. The better
performance results from the feature of the low bit rate AAC
encoder inside OBS Studio according to Section III, where
the cut-off frequency of the encoder on macOS is a bit higher
than that on Windows. Therefore the embedded signal is better
preserved. Even so, the streamer side on Windows can provide
an acceptable PRR in most cases with the last three settings
in Table II.

While on the audience side, we would like to know if
LSync works well with various protocols and playing termi-
nals. HTTP-FLV, DASH, and HLS are the three most widely
used live streaming protocols that transmit media content
over HTTP. To evaluate the influence that different streaming
protocols and browsers have, we measure the PRR with

2194

Fig. 10: Packet reception ratio with different streamer envi-
ronments

Fig. 11: Packet reception ratio with different streaming proto-
cols and browsers on the audience side

different mainstream browsers and the above three protocols.
Fig. 11 demonstrates the result with the configuration of
T = 128ms, BN = 7.

In general, the PRR is 92% on average among all settings.
On desktop devices, the performances are quite similar in
the aspect of streaming protocols, except that the PRR using
DASH is slightly lower than the other two protocols. This
may be due to the fragment lengths of different protocols are
different.

LSync works best on Google Chrome, where the PRRs are
96%, 92%, and 96% when tested with HTTP-FLV, DASH,
and HLS, respectively. Nevertheless, the PRRs slightly drop to
88%, 86%, 90% when the audience service runs on Microsoft
Edge.

On mobile phones, LSync also works well with the three
streaming protocols, i.e., HTTP-FLV, DASH, and HLS. The
PRRs on Android Chrome are 90%, 92%, and 94%, respec-
tively, and on Android Firefox are 94%, 90%, and 94%,
respectively. Although the tests failed to run on iPhone, the
results show that this method does work on ordinary mobile
devices, and it should work on iPhone in the future.

D. Process Delay

According to ITU-R BT.1359 [33], the lip-sync error can
be accepted if the delay is less than 185ms. Referring to
this standard, we aim to build an event-synchronizing system
with a delay of less than 185ms. Previous work in [13], [21],

(a) Longest processing time for each buffer compared with buffer length

(b) Percentage between mean processing time for each buffer and the buffer
length

Fig. 12: Processing time for each audio buffer in diverse
devices under different settings

[22], [34] requires the reception of the whole packet before
processing, which makes the delay from 600ms to 1600ms.
In LSync, we process the signal chirp by chirp to eliminate the
delay. With the Web Audio API, we use a double buffer design
to load audio signals while processing them: during loading
the next section of audio signals, the current section is copied
to another buffer and processed. In order to test how long the
audio analysis process takes for each buffer in various types of
devices, we carry out the experiments under the configuration
shown in Table II. Fig. 12a exhibits the results of the longest
processing duration for each audio buffer compared with the
buffer length. The greater T is, the longer the chirp length
will be, and thus the buffer length increases. For all devices,
the processing time for a single buffer is no longer than
22ms, 59ms, 47ms and 96ms, respectively with different
T , which is less than each single buffer. Therefore, during
a period when the buffer is receiving the next audio signal
section, the last received section can be entirely processed.
The delay is also less than 185ms, satisfying our requirement.
To further illustrate our processing efficiency, we calculate the
mean processing time for different settings. Fig. 12b presents
the result as a percentage between the processing time and the
buffer length. The average processing time for each buffer on
desktop devices is less than 1% of the buffer length. While
on mobile phones, the processing takes up a bit more time
but less than 6% on average of each buffer. According to our

2195

experimental results, not only real-time signal processing is
achieved, but also it is highly efficient.

VI. RELATED WORK

Many researchers have well studied hidden acoustic or
visual channel communications to provide helpful side infor-
mation to audiences [35], [36]. In addition, real-time commu-
nication protocols for the web like WebRTC emerge as well
which enable nearly real-time data transmission for users. We
discuss them from the following three aspects.

A. Hidden Visual Channel Communication

Inframe++ [37] leverages the spatial-temporal flicker-fusion
property of the human visual system and the fast frame rate of
the modern display to embed data onto video content through
complementary frame composition. It achieves a 150 kbps to
240 kbps data rate at 120 fps over a 24’ LCD monitor with
one data frame per 12 display frames, but noticeable flicker
remains. Hilight [38] encodes bits into the pixel translucency
change, which supports a low bit rate of 1.1 kbps but reduces
flicker to unnoticeable levels. ImplicitCode [39] combines both
techniques to simultaneously achieve invisibility and a high
capacity, which is 12× that of HiLight. In TextureCode [40],
they utilize spatial content-adaptive encoding techniques to
achieve both a high goodput of 22 kbps and minimal flicker.
Uber-in-light [41] encodes the data as complementary intensity
changes over different color channels for any screen content
and significantly improved transmission accuracy compared to
Hilight.

Although the above approaches provide relatively high
throughput, they suffer from a few disadvantages in live
streaming. These approaches become less reliable due to
possible frame loss in the live streaming process. Besides,
they require a high frame rate, generally over 120 fps, which
is not available in standard live broadcast tools and typical
play terminals. For instance, the OBS Studio supports 60 fps
at most.

B. Hidden Acoustic Channel Communication

Hidden acoustic communication has also been explored
for years [13], [21], [22], [34], [42]. PhoneEar [42] uses
frequency-shift keying (FSK) modulation to encode informa-
tion in frequencies from 17 kHz to 20 kHz, which transmit
data at the speed of 8 bps. Hyewon Lee et al. adopt chirp
binary orthogonal keying (BOK) to encode data in [21]. They
choose a 19.5 kHz to 22 kHz band for inaudible acoustic
communication and achieve a data rate of 16 bps. Soonwon
Ka et al. leverage chirp quaternary orthogonal keying (QOK)
for modulation in an 18.5 kHz to 19.5 kHz band to deliver
information at 15 bps in [22]. By leveraging masking effects
of the human auditory system, Dolphin [34] adopts OFDM for
modulation in frequencies of 8 kHz to 20 kHz and achieves a
high data rate of 500 bps. Tagscreen [13] inserts hidden sound
markers (i.e., binary orthogonal chirps at 18 kHz to 20 kHz)
into audio for data communication and design an efficient
decoding algorithm, which reduces computations.

The aforementioned work has a few limitations. The greatest
one is that all of them leverage near-ultrasound bands with
frequencies higher than 17 kHz to embed data. However, based
on our study in Section II, such a high-frequency acoustic band
would be cut off by an AAC encoder of standard live broadcast
software with a generally used bit rate of 96k. In addition, few
of them mentioned their signal demodulation delay while the
best one [34] claims the delay of 600ms, which is not good
enough for real-time signal processing.

C. WebRTC
WebRTC is an open-source project released by Google in

2011. By establishing a peer-to-peer connection, both clients
can send video, voice, and generic data to each other [43].
It supports sub–500 milliseconds of real-time latency, which
makes it the fastest protocol on the market. Such a low latency
reduces the burden of synchronizing video stream and other
media content and makes it a fundamental transmission proto-
col for lots of video meeting and chat applications including
Google Meet [44] and Facebook Messenger [45].

Nevertheless, there are several disadvantages of WebRTC
that render it not suitable for our target applications. Basically,
WebRTC is a P2P protocol. The limited bandwidth resource
restricts the number of the audience side that the streamer side
would like to directly communicate with, without sacrificing
the video quality. What is worse, the streamer side should
serve as a CDN itself to deliver streams to the audiences which
requires heavy resource occupation of the computer. However,
in the scenario of live streaming, there might be over a hundred
thousand audiences watching the live at the same time and thus
make it impossible to establish direct communication between
the streamer and audiences. Nonetheless, adding a CDN in
between instead sacrifices the low latency feature of WebRTC.
Besides, there is a serious security concern in browsers that
support WebRTC, which is exposing the user’s internal IP
address to the web. This problem still surfaces on Mozilla
Firefox [46].

VII. CONCLUSION

In this work, we present LSync, for the synchronization of
traditional live streams and other media content. A key innova-
tion is to insert hidden signal in an audible band and eventually
recover the embedded data and makes no disturbance to the
audience as well through elaborate signal modulation and pro-
cessing. We leverage the CSS technique to modulate signals,
which makes sure that the signal can be demodulated at a
very low power level. We achieve completely real-time signal
processing and improve the data rate to 156.25 bps with a
bandwidth of only 1 kHz. We implement both the streamer side
and the audience side with various streaming protocols like
HTTP-FLV, DASH, and HLS at several mainstream browsers
on desktop and mobile devices, which validate the versatility
of LSync.

ACKNOWLEDGMENTS

This work is supported in part by the National Key R&D
Program of China under grant 2021YFB2900100.

2196

REFERENCES

[1] Z. Yin, C. Wu, Z. Yang, and Y. Liu, “Peer-to-Peer Indoor Navigation Us-
ing Smartphones,” IEEE Journal on Selected Areas in Communications,
vol. 35, no. 5, pp. 1141–1153, 2017.

[2] W. Gu, Z. Yang, L. Shangguan, W. Sun, K. Jin, and Y. Liu, “Intelligent
Sleep Stage Mining Service with Smartphones,” in Proceedings of the
2014 ACM international Joint Conference on pervasive and ubiquitous
Computing, 2014, pp. 649–660.

[3] “Rain Classroom,” https://www.yuketang.cn/, (Accessed on April 21,
2021).

[4] “HQ Trivia,” https://hqtrivia.com/legal/faq.html, (Accessed on June 20,
2021).

[5] “Live Streaming Process,” https://www.dacast.com/blog/what-is-live-str
eaming/, (Accessed on June 24, 2021).

[6] “Solution of Alibaba Cloud for Live Quiz,” https://help.aliyun.com/do
cument detail/67427.html, (Accessed on April 21, 2021).

[7] “ID3,” https://id3.org/, (Accessed on June 20, 2021).
[8] “Amazon IVS User Guide,” https://docs.aws.amazon.com/ivs/latest/use

rguide/ivs-ug.pdf, (Accessed on June 20, 2021).
[9] B. Reynders and S. Pollin, “Chirp Spread Spectrum as a Modulation

Technique for Long Range Communication,” in Proceedings of the 2016
Symposium on Communications and Vehicular Technologies. IEEE,
2016, pp. 1–5.

[10] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri,
H. Fuchs, and M. Dietz, “ISO/IEC MPEG-2 Advanced Audio Coding,”
Journal of the Audio engineering society, vol. 45, no. 10, pp. 789–814,
1997.

[11] “OBS Studio,” https://obsproject.com/, (Accessed on June 20, 2021).
[12] “SBR White Paper,” http://users.ece.utexas.edu/∼gerstl/ee382v f14/soc

/drm/SBR White Paper v1.pdf, (Accessed on July 24, 2021).
[13] Q. Lin, L. Yang, and Y. Liu, “Tagscreen: Synchronizing Social Televi-

sions through Hidden Sound Markers,” in Proceedings of the 36th IEEE
Conference on Computer Communications. IEEE, 2017, pp. 1–9.

[14] F. Dang, P. Zhou, Z. Li, and Y. Liu, “NFC-enabled Attack on Cyber
Physical Systems: A Practical Case Study,” in Proceedings of the 36th
IEEE Conference on Computer Communications Workshops, 2017, pp.
289–294.

[15] “Web Audio API,” https://developer.mozilla.org/en-US/docs/Web/API
/Web Audio API, (Accessed on June 24, 2021).

[16] “Web Audio BiquadFilterNode,” https://developer.mozilla.org/zh-CN/do
cs/Web/API/BiquadFilterNode, (Accessed on June 20, 2021).

[17] A. Berni and W. Gregg, “On the Utility of Chirp Modulation for Digital
Signaling,” IEEE Transactions on Communications, vol. 21, no. 6, pp.
748–751, 1973.

[18] Y. Lin, W. Dong, Y. Gao, and T. Gu, “SateLoc: A Virtual Fingerprinting
Approach to Outdoor LoRa Localization Using Satellite Images,” ACM
Transactions on Sensor Networks, vol. 17, no. 4, pp. 1–28, 2021.

[19] H. Jiang, J. Zhang, X. Guo, and Y. He, “Sense Me on the Ride: Accurate
Mobile Sensing over a LoRa Backscatter Channel,” in Proceedings of
the 19th ACM Conference on Embedded Networked Sensor Systems.
ACM, 2021, pp. 125–137.

[20] D. Lin, Q. Wang, W. Min, J. Xu, and Z. Zhang, “A Survey on
Energy-efficient Strategies in Static Wireless Sensor Networks,” ACM
Transactions on Sensor Networks, vol. 17, no. 1, pp. 1–48, 2020.

[21] H. Lee, T. H. Kim, J. W. Choi, and S. Choi, “Chirp Signal-based Aerial
Acoustic Communication for Smart Devices,” in Proceedings of the
34th IEEE Conference on Computer Communications. IEEE, 2015,
pp. 2407–2415.

[22] S. Ka, T. H. Kim, J. Y. Ha, S. H. Lim, S. C. Shin, J. W. Choi, C. Kwak,
and S. Choi, “Near-ultrasound Communication for Tv’s 2nd Screen
Services,” in Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, 2016, pp. 42–54.

[23] “Cyclic Redundancy Check,” https://en.wikipedia.org/wiki/Cyclic redun
dancy check, (Accessed on June 24, 2021).

[24] “Real-time Messaging Protocol (RTMP) Specification,” https://www.ad
obe.com/devnet/rtmp.html, (Accessed on July 27, 2021).

[25] “VB-Cable Virtual Audio Device,” https://vb-audio.com/Cable/, (Ac-
cessed on June 20, 2021).

[26] “MediaElementAudioSourceNode,” https://developer.mozilla.org/en-U
S/docs/Web/API/MediaElementAudioSourceNode, (Accessed on July
27, 2021).

[27] “ScriptProcessorNode,” https://developer.mozilla.org/en-US/docs/Web
/API/ScriptProcessorNode, (Accessed on July 27, 2021).

[28] “Audio Passed through WebAudio is Delayed and Glitchy on Safari,”
https://bugs.webkit.org/show bug.cgi?id=221334, (Accessed on July 27,
2021).

[29] “Node Media Server,” https://github.com/illuspas/Node-Media-Server,
(Accessed on June 24, 2021).

[30] “Flash Video,” https://en.wikipedia.org/wiki/Flash Video, (Accessed on
June 24, 2021).

[31] “HTTP Live Streaming,” https://www.encoding.com/http-live-streaming
-hls/, (Accessed on June 20, 2021).

[32] “Dynamic Adaptive Streaming over HTTP,” https://en.wikipedia.org/w
iki/Dynamic Adaptive Streaming over HTTP, (Accessed on June 24,
2021).

[33] “BT.1395,” https://www.itu.int/dms pubrec/itu-r/rec/bt/R-REC-BT.1359
-1-199811-I!!PDF-E.pdf, (Accessed on June 20, 2021).

[34] Q. Wang, K. Ren, M. Zhou, T. Lei, D. Koutsonikolas, and L. Su, “Mes-
sages Behind the Sound: Real-time Hidden Acoustic Signal Capture
with Smartphones,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking, 2016, pp. 29–41.

[35] X. Chen, X. Wu, X.-Y. Li, X. Ji, Y. He, and Y. Liu, “Privacy-Aware High-
Quality Map Generation with Participatory Sensing,” IEEE Transactions
on Mobile Computing, vol. 15, no. 3, pp. 719–732, 2016.

[36] Z. Yang, L. Jian, C. Wu, and Y. Liu, “Beyond Triangle Inequality:
Sifting Noisy and Outlier Distance Measurements for Localization,”
ACM Transactions on Sensor Networks, vol. 9, no. 2, pp. 1–20, 2013.

[37] A. Wang, Z. Li, C. Peng, G. Shen, G. Fang, and B. Zeng, “In-
frame++ Achieve Simultaneous Screen-human Viewing and Hidden
Screen-camera Communication,” in Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services,
2015, pp. 181–195.

[38] T. Li, C. An, X. Xiao, A. T. Campbell, and X. Zhou, “Real-time Screen-
camera Communication behind Any Scene,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services, 2015, pp. 197–211.

[39] S. Shi, L. Chen, W. Hu, and M. Gruteser, “Reading between Lines:
High-rate, Non-intrusive Visual Codes within Regular Videos via Im-
plicitcode,” in Proceedings of the ACM International Joint Conference
on Pervasive and Ubiquitous Computing, 2015, pp. 157–168.

[40] V. Nguyen, Y. Tang, A. Ashok, M. Gruteser, K. Dana, W. Hu, E. Wen-
growski, and N. Mandayam, “High-rate Flicker-free Screen-camera
Communication with Spatially Adaptive Embedding,” in Proceedings
of the 35th IEEE Conference on Computer Communications. IEEE,
2016, pp. 1–9.

[41] M. Izz, Z. Li, H. Liu, Y. Chen, and F. Li, “Uber-in-light: Unobtru-
sive Visible Light Communication Leveraging Complementary Color
Channel,” in Proceedings of the 35th IEEE Conference on Computer
Communications. IEEE, 2016, pp. 1–9.

[42] A. S. Nittala, X.-D. Yang, S. Bateman, E. Sharlin, and S. Greenberg,
“Phoneear: Interactions for Mobile Devices that Hear High-frequency
Sound-encoded Data,” in Proceedings of the 7th ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, 2015, pp. 174–179.

[43] “WebRTC,” https://webrtc.org/, (Accessed on July 27, 2021).
[44] “Google Meet,” https://meet.google.com/, (Accessed on July 27, 2021).
[45] “Facebook Messenger,” https://www.messenger.com/, (Accessed on July

27, 2021).
[46] “Prevent WebRTC from Leaking Local IP Address,” https://github.com

/gorhill/uBlock/wiki/Prevent-WebRTC-from-leaking-local-IP-address,
(Accessed on July 27, 2021).

2197

