XRSA: Construct Larger Bits RSA
on Low-Cost Devices

Fan DANG, Lingkun LI, Jiajie CHEN

| Background

Background

STM32L562E Cortex-M33 at 110 MHz

Symmetric Algorithm

Software (MB/s)

Accelerated (MB/s)

AES-CBC-128 0.121 4.468

AES-GCM-128 0.008 3.662

SHA-256 0.136 1.855

Asymmetric Algorithm Software (ops/sec) Accelerated (ops/sec) Accelerated (ops/sec)
SP Math Cortex-M ST PKA ECC

RSA 2048 public 9.208 18.083 18.083

RSA 2048 private 0.155 0.526 0.526

DH 2048 key gen 0.833 1.129 1.129

DH 2048 agree 0.411 1.128 1.128

ECC 256 key gen 0.661 35.608 10.309

ECDHE 256 agree 0.661 16.575 10.619

ECDSA 256 sign 0.652 21.912 20.542

ECDSA 256 verify 1.014 10.591 10.667

RSA is too heavy for low-cost devices (e.g., MCUs)

Background

Espressif’s ESP32-C3 Wi-Fi + BLE SoC

— ‘ STM32L562xx
BLE 5.0 , life.augmented

M Wi-Fi MAC link RF receiver

RISC-V controller

icroprocessor | | Cace ook Ultra-low-power Arm® Cortex®-M33 32-bit MCU+TrustZone®+FPU,
p Wi-Fi generator 165DMIPS’ up to 512KB Flash’ 256KB SRAM, SMPS’ AES+PKA

baseband
SRAM RF
transmitter

Datasheet - production data

Switch

Core Memories Clock SCG
GPIO 12C ARM® Cortax"-MO+ Core Program Flash Sran [Phaselocked
RTC memory Balln (Up 10.96 Mz o botspasd run) with BME I - % I I e | [
SPI 12S Dotug v I XIP QuadSP!] | ROM (32K8) I Lo
o ==
Buffer
LED PWM UART |_
Communication Interfaces HMI

Al

D

RSA

| 2xFC || 2 x EMVSIM | | GPIO
FlexiO
3 x LPUART 1xUSBOTG |
L———JI “]|——"””“°‘”" [l e |
T
2x8Pt

RMT S

=
?D >
a 0

> w

m m
II :b
II

NG

HMAC Digital signature

XTS-AES-128 flash encryption

Temperature sensor

Block Diagram of ESP32-C3 "1 KL81 MCU Only

Background

Security

ESP32-C3 ensures that the availability of features, such as the|RSA-3072-
based secure boot and the AES-128-XTS-based flash encryption, can be

used to build connected devices securely. The innovative digital signature

PKA main features:

e Acceleration of RSA, DH and ECC over GF(p) operations, based on the Montgomery
method for fast modular multiplications. More specifically:

— RSA modular exponentiation, RSA Chinese remainder theorem (CRT)
exponentiation

— ECC scalar multiplication, point on curve check
— ECDSA signature generation and verification
e Capability to handle operands up to|3136 bits for RSA/DH|and 640 bits for ECC.

e Arithmetic and modular operations such as addition, subtraction, multiplication,
modular reduction, modular inversion, comparison, and Montgomery multiplication.

Home Qualys Free Trial Contact

Projects

@ Qualys. ssL Labs

You are here: Home > Projects > SSL Server Test > ieee.org

SSL Report: ieee.org (140.98.193.152)

Assessed on: Thu, 02 Dec 2021 14:52:58 UTC | Hide | Clear cache Scan Another »

Summary

Overall Rating

Certificate
Protocol Support

Key Exchange

Cipher Strength

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

weak Diffi

This server supp iman (DH) key Grade capped to B. MORE INFO »

Certificate #1: RSA 2048 bits (SHA256withRSA)

Requires RSA-4096 to get A+

Preliminaries

®m How does an MCU accelerate RSA?

Montgomery Modular Multiplication

" How do we compute RSA fast!

Chinese Remainder Theorem

Preliminaries: Montgomery Modular Multiplication

2
Integer Domain R” mod p Montgomery Domain

a X y o

Ql

Preliminaries: Montgomery Modular Multiplication

® The modulus is a k-bit prime number p.
m Let R=2F,

® A number a in its Montgomery form is
a=a-Rmodp

® The Montgomery Modular Multiplication is defined as
a@®b=a-b-R 1modyp

Preliminaries: Montgomery Modular Multiplication

= With Montgomery modular multiplications

® Turn a number into Montgomery domain
a=a@®R?*=a-Rmodp

® Turn a number back
a=a®@ 1

Preliminaries: Chinese Remainder Theorem

= Raw RSA

= Public key: (p, g, €)
= Private key: (p, g, d). Plaintext m = M mod|N| «= 4096-bit

m RSA-CRT

m Public key: (p, q, e)

RSA-4096

® Private key: (p, q,dy,, dg, ql-m,), where

dp = d mod

(p — 1)‘, d;, = d mod

(CI — 1)|, Qinv = q_l mod

= 2048-bit

Preliminaries: Chinese Remainder Theorem

Algorithm 1 Private-key operation of RSA-CRT.

Require: message m, private key (p, q,d,, dy, Gino)
Ensure: m® mod N

1: S, = m% mod|p
Sq — m% mod q «= 2048-bit
h = Qinv ° (Sp — Sq) mod p
S =S, + h - qmod [N]~ 4096-bit
return S

Algorithm

m Challenge |:compute R?, where R = 22948

r=R-1D1
n=rdr=2-Rmodp
=1 Qnr =2%-Rmodp
=1, @1, =2°-Rmodp

— _ ~2048
72048 = 12047 & T2047 = 2 -Rmodp

Algorithm

= Challenge 2: compute m%» mod p
Divide m into two parts: m4 (highest 2048 bits) & m,(lowest 2048 bits) , i.e.,
m=mq-R+m,

mmodp = (m; R+ m,) modp

= (m; ® R?) ® m,

Algorithm

m Challenge 2:
compute m? mod p

Fast exponentiation
with a constant time

Algorithm 3 A variant of the fast exponentiation algorithm.

Require: m = m mod p, and d,,
Ensure: m% mod p

1. y=1® R?

2: t=m® R?

3: for ¢ = 1|2 < 2048;|11 <2+ 1 do
4. if the rightmost bit of d, is 1 then
5 Yyt
6: |else
7
8
9

dummy < y Xt

end if
ottt
10: dp<dp >> 1
11: end for

12: return y ® 1

Algorithm

m Challenge 3: compute x - y, where
x,y are 2048-bit numbers

Divide X, y into two parts, respectively:

x1,Y1 (highest 1024 bits) &
X5,V (lowest 1024 bits)

Let HI(x) denote highest 1024 bits of x,

LO(x) denote lowest 1024 bits of x.

S=25,+h-gmodN

THE COMPOSITION OF x - y

4096~3073 3072~2049 2048~-1023 1024~1

Hl(z1y1) LO(z1y1)
Hl(z1y2) LO(z1y2)
HI(z2y1) LO(z2y1)
Hl(z2y2) LO(w2y2)

= Why can we use the MM
to compute a normal
multiplication?

Algorithm

® Why can we use the MM to compute a normal multiplication?
» R°1=1mod(R—-1)
" a®b=a-bmod(R—-1)

m Sincea,b < 219%* wehavea-b <R —1

Complexity

Algorithm 1 Private-key operation of RSA-CRT.

Require: message m, private key (p, q, dp, dy, Ginv)
Ensure: m® mod N

1: S, = m% mod p = 6148 ® ops
2: S, = m% mod q = 6148 ® ops
3: h:q@;m-(Sp—Sq) mod p &= 4 Q ops
4: S =5,+h-qmod N = 4 X ops

5. return S

12,304 & ops

Implementation

Applets Services
Crypto
OpenPGP PIV WebAuthn rsaAl [Ecc
B
File System
APDU Dispatcher
CCID HID NFC

USB

(ISO 14443-4) Im

https://github.com/canokeys

Running Time (s)

Evaluation

92.218
100 . ‘
50 '
10
5
1
0.455
0.5 R
|
|
|
| o | |
naive xRSA

RSA-4096 performance on a 48 MHz MCU:

203x faster

RUNNING TIME OF SIGNING USING GNUPG

CanoKey YubiKey 5 NFC

Average running time 869 ms 670 ms

29.7% slower than the native RSA-4096 acceleration

RSA4096 key import

Addkey 4 4096 # [10] gen RSA4096 key
Key2card 1@ 3 # key[1@] to Authentication key
Addkey 6 4096 # [11]

Key2card 11 2 # key[11] to Encryption key
GPGAuth

gen RSA4096 key

GPGENC

Addkey 4 4096 # [12] gen RSA4096 key
Key2card 12 1 # key[12] to Signature key
GPGSign

Automated correctness test

Conclusion

® We design an algorithm that uses the most existing 2048-bit
Montgomery modular multiplier to achieve a 4096-bit RSA
cryptography mechanism without replacing any circuit component.

= We implement the 4096-bit RSA cryptography on an existing device,
which is equipped with a 2048-bit Montgomery modular multiplier.

m Experiment results show that our method achieves the correct
behavior of 4096-bit RSA cryptography, and makes it over 200x faster
than the software-based solution.

Thanks!

