
A Survey on Vulnerability Detection Tools of Smart
Contract Bytecode

Junzhou Xu
School of Software
Tsinghua University

Beijing, China
xujunzhou14@163.com

 Fan Dang
School of Software
Tsinghua University

Beijing, China
dangfan@tsinghua.edu.cn

Xuan Ding
School of Software
Tsinghua University

Beijing, China
dingx04@gmail.com

Min Zhou
School of Software
Tsinghua University

Beijing, China
zhoumin03@gmail.com

Abstract—As the core of present blockchain applications,
smart contracts are designed to help multiple parties reach an
agreement. Along with the promotion of smart contract
applications, a large number of economic losses caused by
attacks on smart contract vulnerabilities have emerged. Since
most smart contracts only disclose bytecode, in recent years,
there have been numerous researches on the vulnerability
detection of smart contract bytecode, mainly for Ethereum
smart contracts, achieving considerable results. My survey
summarizes the methods and supported vulnerability types of
these tools, aimed at Ethereum or EOSIO, over the years. The
problems reflected in it shed light on the future work of smart
contract bytecode vulnerability detection.

Keywords—vulnerability detection, smart contracts, bytecode,
survey

I. INTRODUCTION

Since Satoshi Nakamoto invented Bitcoin in 2008 [1],
blockchain technology, one of the underlying technologies of
Bitcoin, has received increasing attention. Today, the
application range of blockchain has spread from digital
currency to all aspects of life. Smart contracts, the core of
these applications, are agreements written in computer code,
allowing people to abide by the agreements without requiring
trust.

However, when writing smart contracts, developers may
leave some vulnerabilities in the contracts due to the
misunderstanding of the code language, the imperfect
contract design, or the carelessness. These vulnerabilities are
perceived and targeted by hackers, causing a lot of economic
losses.

Whether it is the most popular Ethereum launched in late
2013 or the emerging EOSIO appeared in 2018 [2], [3],
smart contracts and decentralized applications are gradually
gaining attention and promotion. There are currently many
tools that use various methods to detect various
vulnerabilities in smart contracts on different platforms.

For developers, security analysis tools for high-level
smart contract languages may be more in line with demand.
However, for users who want to know whether the smart
contracts they are using is secure, for the reason that these
contracts are usually not open-source, users can only obtain
the bytecodes of these contracts, so it is more realistic for
users to make use of security analysis tools for smart contract
bytecode. Therefore, in order to help developers and users
analyze the security of smart contracts, some tools for
detecting the vulnerability of smart contract bytecodes have

emerged.

The methods of these tools are variable, and the types of
vulnerabilities they supported are different. This survey will
analyze and summarize these tools based on their methods
and supported vulnerability types. Then based on the
conclusions, the survey will propose some possible
directions for future related work. Different from other
surveys, this survey not only focuses on EVM bytecode
contracts on the Ethereum platform, which most tools are
aimed at, but also on web-assembly(WASM) contracts on
the EOSIO platform.

II. METHODS

This survey divides the methods used by the tools into
three categories and briefly explains these methods.

A. Code Translation
This kind of method translates the code into another form

which is easier to analyze. Code translation methods used by
vulnerability detection tools include disassembly [4], [6], [9],
[10], [12], [14], [18], [20], decompilation [6], etc.

Disassembly is a method to translate bytecode into
readable assembly language, using symbols and labels to
represent operations and addresses. Decompilation is a
method to translate bytecode into a higher-level language,
trying to reconstruct the original source code. Disassembly
and decompilation are two similar methods that improve the
readability of the code.

B. Static Analysis
Static analysis is a method that examining the code

without actually executing the program. This method will
obtain the overall structure of the code and abstract the code
information for inference. Most of the tools are based on
static analysis. Static analysis methods used by vulnerability
detection tools include control flow analysis [4], [9], [12],
[14], [18], [20], pattern matching [6], [18], data flow analysis
[6], symbolic execution [4], [9], [10], [12], [14], [20], etc.

Control flow analysis is a method that uses a control flow
graph (CFG) to represent paths traversed through a program
during execution. In a CFG, the nodes represent the basic
blocks of the program, and the edges represent the running
order among blocks. A CFG will help tools confirm the
control process of the program.

Pattern matching is a method that searches some patterns

94

2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)

978-1-7281-8304-6/20/$31.00 ©2020 IEEE Dalian, China
September 27-29, 2020

in a given sequence of instructions. It first defines some
patterns that are secure or vulnerable and then checks the
code to find whether there is a match. The main concern is
how to define secure patterns and insecure patterns simply
but precisely.

Data flow analysis is a method of collecting information
about the dependencies and the possible ranges of values at
various points in a program. The points are usually
determined with the aid of the control flow graph. The main
concern is how to infer the information at each point
efficiently.

Symbolic execution is a method of executing a program
at a symbolic level. It treats values as symbols and code
instructions as symbolic equations, solving equations to
reason about the logic of code execution. Each symbolic
path has some constraints, indicating the restriction of the
symbolic inputs of this path. By adding additional specific
constraints to the equation set, symbolic execution can
determine whether a program may have a corresponding
output. Most of the symbolic execution tools use Z3-Solver
to help to solve the equation set. The main challenges of
symbolic execution usually include three parts: path
exploration, constraint resolution, and memory modeling.

C. Dynamic Analysis
Dynamic analysis is a method that examining the code by

executing it on a real or virtual processor. Among the
vulnerability detection tools, dynamic analysis methods are
used far less frequently. Some vulnerability detection tools
make use of dynamic analysis to validate the results of static
analysis [12], [14], while others take advantage of fuzzing
[16].

Fuzzing is used to generate unexpected or random inputs
for the program and to monitor for exceptions. The first
challenge of fuzzing is how to generate the inputs so that
they are unexpected enough to find the vulnerabilities but at
the same time reasonable enough so the vulnerabilities can
be triggered in practice. The second challenge is how to
define the conditions for whether a vulnerability is
established.

III. VULNERABILITY TYPES

In addition to general vulnerability types such as integer
overflow, smart contracts also have unique vulnerability
types due to the characteristics of the blockchain platform.

A. General Vulnerability Types
1) Integer overflow (IO)
Usually, the integer type in smart contract language, e.g.,

uint256 in Solidity and i64 in web-assembly, has a limited
range. If the value of an integer variable exceeds the range,
the value will be adjusted into the range, thereby obtaining
incorrect results.

2) Permission verification missing (PVM)
Some key function calls and read/write operations need

to verify the user's permission. If there is a lack of
permission verification, hackers will be able to perform
unauthorized operations, which will cause losses. This kind
of vulnerability can be further subdivided into unrestricted
write, unrestricted transfer, unrestricted call, suicidal contract,
etc.

3) Exception handling error (EHE)
When a program receives illegal inputs, the program

needs to handle the exception. Specifically, when a contract
calls an external function, the contract needs to check the
return value to determine whether the call is successful. A
specific example in Solidity contracts is unchecked and
failed sendings: as the send instruction will not throw any
exception or error message when the sending is failed, if
there is no exception handling implemented in send method,
there may be errors in the balance calculation.

B. Unique vulnerabilities in Smart Contract
1) Transaction ordering dependency (TOD)
The transaction takes a certain time from initiation to

confirmation. If someone initiates a transaction to modify the
contract during this period and the modified transaction is
confirmed earlier, the transaction initiated earlier will be
affected. This dependency on the order of transactions is a
critical problem in practice, e.g. seller may change the price
after buyer’s buying so that buyer will be forced to pay more
without consent.

2) Predictable random number (PRN)
The contract may use predictable seeds, such as block

timestamps and block numbers, to generate pseudo-random
numbers. In gambling contracts, hackers may take advantage
of this to increase their winning rate. In these types of
vulnerabilities, most tools detect timestamp dependencies
only.

3) Reentrancy (RE)
In a Solidity contract, there is a function called the

fallback function that will be called when an account is sent
a call method. If the callback function invokes a call method,
this process may be repeated until the gas is exhausted.

4) Frozen Tokens (FT)
Some contracts rely on external library contracts to

transfer tokens. If the external library contract is terminated
or destructed, this contract cannot transfer tokens to other
contracts, which means that the tokens are frozen in the
contract and cannot be consumed.

5) Fake EOS and fake notice (FF)
In a EOSIO contract, there must be an apply function as

a corresponding action handler. In addition, the eosio.token
contract is a token standard contract in EOSIO, responsible
for all token management in EOSIO. If user A wants to send
tokens to B, A will push transfer action to eosio.token and
then eosio.token will send a notice to B, triggering B’s apply
function. Both fake EOS and fake notice involve this process.
Regarding fake EOS, if the apply function doesn’t verify that
the sender of notice is eosio.token, the contract may mistake
false tokens for true tokens. About fake notice, if the apply
function doesn’t verify that the receiver of the notice is the
contract itself, the contract may mistake notices forwarded
by other contracts as its own.

IV. TOOLS

In recent years, many vulnerability detection tools have
been developed for smart contract bytecode, of which most
aim at Ethereum. Table I shows the methods and supported
vulnerability types of these tools briefly.

95

TABLE I. METHODS AND SUPPORTED VULNERABILITY TYPES OF TOOLS

Tool
Method Supported Vulnerability Type

Disassembly CFG Pattern
matching

Symbolic
execution

Result
validation Fuzzing IO PVM EHE TOD PRN RE FT FF

Oyente √ √ √ √ √ √ √

Securify √ √ √ √ √ √

Mythril √ √ √ √ √ √ √ √ √

Manticore √ √ √ √ √ √

teEther √ √ √ √ √

MAIAN √ √ √ √ √ √

ContractFuzzer √ √ √ √ √

EVulHunter √ √ √ √

EOSafe √ √ √ √ √ √

A. Tools for Ethereum Contracts
1) Oyente
As a starting milestone in this field, Oyente is a static

analysis tool based on symbolic execution that can be run
directly on EVM bytecode without accessing high-level
languages such as Solidity [4], [5]. Oyente supports the
detection of vulnerabilities such as TOD, the predictable
random number (timestamp dependency), reentrancy, and
exception handling error.

Oyente has four modules: CFGBuilder, Explorer,
CoreAnalysis, and Validator. CFGBuilder constructs a CFG
of the contract; Explorer symbolically executes the contract;
CoreAnalysis takes in the outputs of Explorer, locating the
vulnerabilities; Validator uses Z3-Solver to filter out some
false positives of TOD detection and reports the final result
to users.

Oyente covers most of the EVM opcodes, but due to the
lack of context information such as variable types and the
reuse of same bytecode by different function calls, it is
difficult for Oyente to reconstruct the development intent
only from the EVM bytecode, thus it cannot verify some
issues on fairness and correctness such as integer overflow.
Oyente simplifies the processing of loops by limiting the
number of loops to prevent path explosions, which leads to
the underreporting of some defects.

2) Securify
Securify is a lightweight and scalable security verifier for

Ethereum smart contracts [6], [7]. As a static analysis tool
based on symbolic abstraction and pattern matching,
Securify defines compliance patterns and violation patterns
for each security attribute, and then match the contract with
these patterns to detect vulnerabilities. Securify supports
detection of vulnerabilities such as frozen tokens, permission
verification missing (unrestricted write and unrestricted
transfer), TOD, argument validation missing, and exception
handling error.

Starting with the EVM bytecode of the contract, Securify
decompiles the bytecode into a static-single assignment form
(SSA). After symbolically encoding the dependence graph of
the contracts in stratified Datalog, Securify uses ready-made
Datalog solvers to analyze the Datalog code and get semantic
facts of contract efficiently. The semantic facts include data
flow dependency and control flow dependency. The

compliance and violation patterns are also defined in a
designated domain-specific language (DSL). The matching
result of these patterns in the contract will reveal whether the
contract is safe.

Recently, Securify officially released version 2.0, which
supports an updated version of the smart contract language
and more detailed types of vulnerability detection [8]. For
instance, Securify2 refines TOD into three vulnerabilities:
TODAmount, TODReceiver, and TODTransfer.

3) Mythril
Mythril is a security analysis tool for Ethereum contracts

based on symbolic execution and taint analysis [9]. After
disassembling the EVM bytecode, Mythril initializes the
state of the contract account and uses a couple of transactions
to explore the state space of the contract. When an undesired
state is discovered, Mythril uses Z3-Solver to prove or deny
its reachability under certain assumptions. When a
vulnerability state is discovered, Mythril will calculate the
transactions required to reach that state to verify the
existence of the vulnerability.

Mythril supports the detection of vulnerabilities such as
integer overflow, permission verification missing
(unrestricted write, unrestricted jump, suicidal contract),
exception handling error (unchecked call return value),
reentrancy, predictable random number, frozen tokens, etc.

4) Manticore
Manticore is a symbolic execution framework for the

analysis of Ethereum smart contracts as well as Linux ELF
binaries [10], [11]. Based on EVM bytecode, Manticore can
execute the contract with symbolic transactions where both
value and data are symbolic and explore all possible states,
generating corresponding concrete inputs for any program
state with Z3-Solver. On this basis, Manticore can detect
vulnerabilities in contracts. Through event callbacks and
instruction hooking, Manticore can control the exploration of
the state at a fine-grained level. In a default contract analysis,
Manticore gets 66% code coverage on average.

Manticore supports the detection of vulnerabilities such
as integer overflow, reentrancy, permission verification
missing (external call or ether leak, suicidal contract),
exception handling error (unchecked call return value), etc.

Manticore is currently under development and does not
cover all opcodes. The official recommendation is to compile

96

the contract with Solidity version 0.4.x to ensure the validity
of the tool analysis.

5) teEther
teEther is an analysis tool for Ethereum EVM contracts

based on symbolic execution and result validation, focusing
on detecting permission verification missing (unrestricted
call) [12], [13]. The process of teEther analyzing contracts
can be divided into five steps: The first step is to build a CFG
for the contract; The second step is to scan the contract for
important instructions, including critical instructions and
state-changing instructions, e.g. DELEGATECALL,
SELFDESTRUCT, SSTORE, etc.; The third step is to
explore paths to these instructions; The fourth step is to
generate a set of path constraints through symbolic execution;
The last step is to solve the constraints of these paths to
detect the vulnerabilities. To validate the detection results,
teEther will test the contract on a private blockchain.

6) MAIAN
MAIAN is an analysis tool for Ethereum EVM contracts

based on symbolic execution and result validation [14], [15].
It symbolic executes the contract with Z3-Solver, checking
the paths of execution. To validate the detection results,
MAIAN will test the contract on a private blockchain,
attacking the contract with concrete transactions.

MAIAN supports the detection of vulnerabilities
including permission verification missing (unrestricted
transfer and suicidal contract) and frozen tokens.

7) ContractFuzzer
ContractFuzzer is a fuzzer to detect vulnerabilities in

Ethereum EVM contracts [16], [17]. In this work is proposed
the first fuzzing framework and a set of new test oracles for
detecting vulnerabilities in Ethereum contracts.

ContractFuzzer consists of two parts: offline
instrumentation and online fuzzing. The offline
instrumentation part is to instrument the EVM code in order
for the fuzzing part to monitor the execution of the contract.
In the online fuzzing part, after analyzing the application
binary interface (ABI) and the EVM bytecode of the contract,
ContractFuzzer will extract the information of ABI functions,
which helps the tool generate valid fuzzing inputs. The
fuzzing inputs of function calls to the external contracts will
be randomly selected from the smart contracts crawled on
Ethereum by the tool.

ContractFuzzer supports the detection of vulnerabilities
including exception handling error, reentrancy, predictable
random number, frozen tokens, etc.

B. Tools for EOSIO Contracts
1) EVulHunter
As the first vulnerability detection tool designed for

EOSIO, EVulHunter is a static analysis tool for EOSIO
WASM contracts based on pattern matching [18], [19].
Unlike other tools, this tool is designed specifically for fake
EOS and fake notice detection.

EVulHunter consists of three modules: CFG Builder,
WASM Simulator, and Detector Engine. In the CFG Builder
module, EVulHunter builds the CFG of the contract based on
a ready-made tool Octopus, a security analysis framework
for WASM and smart contracts. WASM Simulator module
works as a virtual machine for further analyses, modifying a

Stack and Memory structure during tracing instruction of the
WASM code. In order to recover the semantic type
information, the module also observes and summarizes
several special patterns including some important parameters
and strings (in a format of 32-bit encoding integer). In the
Detector Engine module, two detectors for fake EOS and
fake notice are implemented respectively, each detector
including a pattern of corresponding vulnerability for
matching.

Considering the difference between the various versions
of CDT, EVulHunter covers and analyzes all variants,
including patterns, pairs, and elements in the comparison
mechanism. In the validation, the tool got full accuracy for
fake notice vulnerability. For fake EOS vulnerability,
EVulHunter got some false positives for the reason that the
contracts acknowledged the legitimacy of an additional
account.

2) EOSafe
EOSafe is a static analysis framework for vulnerability

detection in EOSIO WASM smart contracts, based on
symbolic execution [20], [21]. EOSafe supports the detection
of vulnerabilities such as fake EOS, fake notice, predictable
random number, and permission verification missing.

EOSafe is composed of three modules mainly: Engine,
Emulator, and Scanner. The engine is short for Symbolic
Execution Engine, designed as a platform for execution
imitation of a contract. Receiving the CFG and dissembled
instructions of the contract as the inputs, Engine symbolic
executes the code within basic blocks, exploring all workable
paths and gathering path constraints. The emulator is short
for EOSIO Library Emulator, emulating the side effects of
imported functions in the contract. The scanner is short for
Vulnerability Scanner, locating suspicious functions, and
detecting vulnerabilities.

In the validation, EOSafe got full accuracy in detecting
permission verification missing, fake EOS and fake notice.
EOSafe got one false negative in detecting predictable
random number, for the reason that the tool did not explore
enough paths before timeout.

V. DISCUSSION

Although there have been considerable achievements in
the vulnerability detection of smart contract bytecode, these
tools still have some common problems or areas that can be
improved.

A. Platform and Language
As the most popular blockchain platform, Ethereum is

naturally the main target of these tools. Compared to
Ethereum, the emergence and popularity of EOSIO are the
latter. With the overall architecture of the platform design far
more complicated than Ethereum, it is reasonable that the
tools for EOSIO are far less than Ethereum. However, with
the development of decentralized applications on EOSIO, the
security analysis of EOSIO contract should naturally receive
attention. In addition, Ethereum is also designing Ethereum
flavored web-assembly (ewasm), a subset of WASM to be
used for Ethereum contracts, so the development of
vulnerability detection tools for WASM contracts will be an
important direction next.

97

B. Vulnerable Types
Difficulties in detecting different types of vulnerabilities

vary. For example, simple pattern matching can detect fake
EOS and fake notice precisely, but neither symbol execution
nor fuzzing can guarantee 100% accurate detection of TOD.
Even if the methods used are similar, the range of
vulnerability types detected by different tools is also
inconsistent. Therefore, how to accurately detect all currently
known types of vulnerabilities in a single system is still a
problem to be solved.

C. Automated Validation of Result
There are two tools in this survey, teEther, and MAIAN,

that validate the results of static analysis through dynamic
analysis, but the specific methods of these two tools are
manually testing the contract on private blockchains. If the
results of static analysis can be automatically validated by
the tools, not only can the accuracy of tool detection be
improved, but also the labor cost can be reduced.

VI. CONCLUSION

Whether on the most popular blockchain platform
Ethereum or the rising platform EOSIO, smart contracts and
distributed applications are gradually gaining attention and
promotion. Compared to tools for high-level languages, tools
for bytecode are more versatile for users and developers.
There are currently many tools that use various methods to
detect various vulnerabilities in smart contract bytecode on
different platforms. These tools have their advantages and
disadvantages in supporting language versions, detecting
vulnerability types, accuracy, and performance. This survey
summarizes the types of vulnerabilities that have emerged in
smart contracts, sorts out the methods and types of
vulnerabilities detected by current vulnerability detection
tools, and finally puts forward some ideas for possible
directions for future work.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Nov.

1, 2008. Accessed on: Jun. 14, 2020. [Online]. Available:
https://bitcoin.org/bitcoin.pdf

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper 151, 2014, pp. 1-32.

[3] “EOS.IO Technical White Paper v2,” Mar. 16, 2018. Accessed on:
Jun. 14, 2020. [Online]. Available:
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhit
ePaper.md

[4] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making

smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
254-269.

[5] “Oyente: An Analysis Tool for Smart Contracts,” Accessed on: Jun.
14, 2020. [Online] Available: https://github.com/melonproject/oyente

[6] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M.
Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67-82.

[7] “Securify: Security Scanner for Ethereum Smart Contracts,” Accessed
on: Jun. 14, 2020. [Online] Available: https://github.com/eth-
sri/securify

[8] “Securify2: Securify v2.0,” Accessed on: Jun. 14, 2020. [Online]
Available: https://github.com/eth-sri/securify2

[9] “Mythril: Security analysis tool for EVM bytecode,” Accessed on:
Jun. 14, 2020. [Online] Available:
https://github.com/ConsenSys/mythril-classic.

[10] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J.
Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” in
2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 1186-1189.

[11] “Manticore: Symbolic execution tool,” Accessed on: Jun. 14, 2020.
[Online] Available: https://github.com/trailofbits/manticore

[12] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to
automatically exploit smart contracts,” in 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association, 2018, pp.
1317–1333.

[13] “teEther: Analysis and automatic exploitation framework for
Ethereum smart contracts,” Accessed on: Jun. 14, 2020. [Online]
Available: https://github.com/nescio007/teether

[14] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,”
arXiv:1802.06038, 2018.

[15] “MAIAN: automatic tool for finding trace vulnerabilities in
Ethereum smart contracts,” Accessed on: Jun. 14, 2020. [Online]
Available: https://github.com/ivicanikolicsg/MAIAN

[16] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 259-269.

[17] “ContractFuzzer: The Ethereum Smart Contract Fuzzer for Security
Vulnerability Detection,” Accessed on: Jun. 14, 2020. [Online]
Available: https://github.com/gongbell/ContractFuzzer

[18] L. Quan, L. Wu, and H. Wang, “EVulHunter: Detecting Fake
Transfer Vulnerabilities for EOSIO's Smart Contracts at
Webassembly-level,” arXiv:1906.10362, 2019.

[19] “EVulHunter,” Accessed on: Jun. 14, 2020. [Online] Available:
https://github.com/EVulHunter/EVulHunter

[20] N. He, R. Zhang, L. Wu, H. Wang, X. Luo, Y. Guo, T. Yu, and X.
Jiang, “Security analysis of EOSIO smart contracts,”
arXiv:2003.06568, 2020.

[21] “EOSafe: A powerful on-chain smart-contract wallet on the EOSIO
platform,” Accessed on: Jun. 14, 2020. [Online] Available:
https://github.com/xJonathanLEI/EOSafe

98

