IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

1159

Pricing Data Tampering in Automated Fare
Collection with NFC-Equipped Smartphones

, Ennan Zhai, Zhenhua Li
IEEE, Kaigui Bian

Fan Dang

, Member, IEEE, Pengfei Zhou, Aziz Mohaisen, Senior Member,
, Member, IEEE, Qingfu Wen

, and Mo Li, Member, IEEE

Abstract—Automated Fare Collection (AFC) systems have been globally deployed for decades, particularly in the public transportation
network where the transit fee is calculated based on the length of the trip (a.k.a., distance-based pricing AFC systems). Although most
messages of AFC systems are insecurely transferred in plaintext, system operators did not pay much attention to this vulnerability,
since the AFC network is basically isolated from the public network (e.g., the Internet)—there is no way of exploiting such a vulnerability
from the outside of the AFC network. Nevertheless, in recent years, the advent of Near Field Communication (NFC)-equipped
smartphones has opened up a channel to invade into the AFC network from the mobile Internet, i.e., by Host-based Card Emulation
(HCE) over NFC-equipped smartphones. In this paper, we identify a novel paradigm of attacks, called LessPay, against modern
distance-based pricing AFC systems, enabling users to pay much less than what they are supposed to be charged. The identified
attack has two important properties: 1) it is invisible to AFC system operators because the attack never causes any inconsistency in the
back-end database of the operators; and 2) it can be scalable to affect a large number of users (e.g., 10,000) by only requiring a
moderate-sized AFC card pool (e.g., containing 150 cards). To evaluate the efficacy of the attack, we developed an HCE app to launch
the LessPay attack; and the real-world experiments demonstrate not only the feasibility of the LessPay attack (with 97.6 percent
success rate) but also its low cost in terms of bandwidth and computation. Finally, we propose, implement and evaluate four types of
countermeasures, and present security analysis and comparison of these countermeasures on defending against the LessPay attack.

Index Terms—Automated fare collection (AFC), near field communication (NFC), host-based card emulation (HCE), security, vulnerability,

attack, countermeasure

<+

1 INTRODUCTION

AUTOMATED Fare Collection (AFC) systems have been
globally deployed for decades to automate manual
ticketing and charging systems, particularly in public trans-
portation networks. As transit routes in modern cities are
usually quite long, most of today’s AFC systems adopt a
distance-based pricing strategy, where the transit fee is cal-
culated based on the length of the trip. To date, billions of
AFC cards have been issued across the world.

A typical AFC system leverages a symmetric encryption
method (e.g., based on 3DES [1] or AES algorithm [2]) to
authenticate both the entities and messages involved. When
an AFC card is officially issued, an unchangeable unique
transaction key, 7K, is written into the card, which will be

e F. Dang, Z. Li, P. Zhou, and Q. Wen are with the School of Software,
TNLIST, and KLISS MoE, Tsinghua University, Beijing 100084, China.
E-mail: {dangf13, wqf15)@mails.tsinghua.edu.cn, {lizhenhual983, zhoupf05}
@tsinghua.edu.cn.

e E. Zhai is with the Department of Computer Science, Yale University,
New Haven, CT 06520. E-mail: ennan.zhai@yale.edu.

o A. Mohaisen is with the Department of Computer Science, University of
Central Florida, Orlando, FL 32816. E-mail: mohaisen@cs.ucf.edu.

e K. Bian is with the Department of Computer Science and Technology,
Peking University, Beijing 100080, China. E-mail: bkg@pku.edu.cn.

e M. Li is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore 639798. E-mail: limo@ntu.edu.sg.

Manuscript received 18 July 2017; revised 25 May 2018; accepted 26 June
2018. Date of publication 5 July 2018; date of current version 1 Apr. 2019.
(Corresponding author: Zhenhua Li.)

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TMC.2018.2853114

used to generate a dynamic session key, SK; and a mes-
sage authentication code (or MAC) [3] during the debit
phase. Surprisingly, all the other data (e.g., the entrance
or exit information used for calculating the trip fare)
exchanged between AFC cards and terminals (i.e., fare-
gates or fareboxes) are in the plaintext format, which is
insecure [4], [5], [6], [7], [8]. The AFC system operators,
nevertheless, do not need to worry about such a vulnera-
bility, as the AFC network is well isolated from the public
network (e.g., the Internet). Hence, it is quite difficult for
any attacker to hack into the infrastructure of AFC sys-
tems from the outside of the AFC network in practice.

However, in recent years the advent of Near Field
Communication (NFC)-equipped smartphones has bridged
the gap between the AFC network and the Internet, thus
putting AFC systems in a highly dangerous situation.
Nowadays, the NFC module has become one of the default
configurations of mainstream smartphones, such as iPhone
and many Android phones. The NFC module operates at
the same frequency (13.56 MHz) and implements the same
standard (ISO/IEC 7816-4 and ISO/IEC 14443) as those in
most AFC systems [9]. Moreover, it can work in a special
Host-based Card Emulation (HCE) mode that allows any
Android application to emulate an AFC card and talk
directly to an AFC terminal.

In this paper, we identify a novel paradigm of attacks,
called the LessPay attack, against modern distance-based pric-
ing AFC systems. The goal of the attack is to pay less than
actually required with a scalable method and does not recover

1536-1233 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9949-6987
https://orcid.org/0000-0002-9949-6987
https://orcid.org/0000-0002-9949-6987
https://orcid.org/0000-0002-9949-6987
https://orcid.org/0000-0002-9949-6987
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0003-0136-6082
https://orcid.org/0000-0003-0136-6082
https://orcid.org/0000-0003-0136-6082
https://orcid.org/0000-0003-0136-6082
https://orcid.org/0000-0003-0136-6082
https://orcid.org/0000-0002-4278-2771
https://orcid.org/0000-0002-4278-2771
https://orcid.org/0000-0002-4278-2771
https://orcid.org/0000-0002-4278-2771
https://orcid.org/0000-0002-4278-2771
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
https://orcid.org/0000-0002-6047-9709
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

1160
y X 1. Entrance NFC ;}) Database
m Data . (always in consistency)
Web Server
5. Debit 6. Auth Entrance
Cod
- 2 Fake 3. Calculate Pri
Entrance alculate Price
: ETE T EST : < Debit e]]) 9'00 AFC Back End
... AFCCadPoal 7 Auth Code
Cloud Exit

Fig. 1. Architectural overview of our designed attack on an AFC system.
Red arrows denote the tampered messages, which however never
cause inconsistency in the database of the AFC system.

the secret keys, which usually requires highly professional
devices.! In order to launch such attacks, the attackers only
need to have NFC-equipped smartphones and have installed
LessPay—our developed HCE app for LessPay—on their
smartphones. Fig. 1 presents a step-by-step workflow of the
LessPay attack, which consists of two important phases: tam-
pering entrance data (Step 1-2) and relay attack on AFC card
(Step 4-7), which we briefly outline in the following.

e Phase 1: Tampering entrance data. As shown in Fig. 1,
when a LessPay user wants to have a trip by metro,
she first taps her smartphone on an entrance termi-
nal. Then, the entrance terminal writes the entrance
data into the AFC card emulated by LessPay, indicat-
ing the user’s entrance station and timestamp. Subse-
quently, the entrance data is reported to the cloud of
LessPay via a cellular connection (Step 1). After
receiving the entrance data, the cloud periodically
sends fake entrance data to the user (Step 2), in order
to minimize the expected fare paid by her (note that
the cloud does not know the user’s destination). In
practice, the period is configured as two minutes
and the cellular traffic cost is within tens of KBs.

e Phase 2: Relay attack on AFC card. When the user
reaches her destination, she taps her smartphone on
an exit terminal, and the exit terminal calculates how
much the user should pay for the trip according to
the fake entrance data (Step 3). Afterward, the exit
terminal sends a debit message to the emulated AFC
card, which is instantly forwarded to the cloud of
LessPay (Step 4). On the cloud side, this debit mes-
sage is first relayed to the physical AFC card corre-
sponding to the emulated AFC card (Step 5), and
then the message authentication code (MAC) is
relayed to the web server (Step 6). Finally, the web
server returns the debit message together with MAC
to LessPay to the smartphone (Step 7), and a transac-
tion log is reported to the AFC back end by the exit
terminal (Step 8). According to our measurement
results, the round-trip time from Step 4 to Step 7 is
generally within 100 ms, which is totally acceptable
to user’s real-world driving experience.

The key requirement of the LessPay attack is an AFC

card pool that maintains a number of physical AFC cards for

1. Recovering secret keys is usually achieved via the side-channel
attack [10] by exploiting extensive physical information like timing
information or power consumption during the execution of crypto-
graphic algorithms.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

conducting relay attacks (i.e., Step 5 and Step 6 in Fig. 1). The
success of relay attacks guarantees two important properties.
First, AFC back end cannot detect any data inconsistency dur-
ing the process of the attack, which means the attack is invisi-
ble to AFC system operators. In other words, for an AFC
system operator, the debit & MAC provided by LessPay is
indistinguishable from the ones offered by a legitimate AFC
card. Second, as the web server (at the cloud side in Fig. 1)
tampers both the station and timestamp information in the
entrance data to forge a very short trip, we only need to main-
tain a relatively small number of cards in the pool to serve for
a large number of users, e.g., 150 cards serving 10,000 users.
This is because our users’” very short fake trips can be easily
scheduled by the cloud to totally avoid conflicts.

As a representative case study, we conducted real-world
experiments to launch the LessPay attack against the City
Traffic Card (CTC) system in City X, one of the major cities
in China, with tens of millions population. Specifically, 100
users were recruited and each user randomly used LessPay
to take a subway 40 times a month. During three-month
experiments (from Jan. 10th to Apr. 10th, 2016) with a total
of 12,000 tests, 97.6 percent tests passed (the failed tests are
due to the poor quality of cellular connections). After the
experiments, all cards in our card pool still work well. This
shows the feasibility and scalability of the identified attack.

In order to defend against the LessPay attack, we pro-
pose four types of countermeasures corresponding to differ-
ent protection capabilities and deployment overheads: 1)
limiting frame waiting time, or FWT (Section 5.1); 2) protect-
ing the entrance data (Section 5.2); 3) online fare calculation
(Section 5.3); and 4) dynamic Quick Response (QR) codes
(Section 5.4). We not only design and implement these
countermeasures, but also evaluate and analyze the feasibil-
ity of these defenses in reality.

In summary, this paper makes the following contributions:

e We identify a real-world attack with NFC-equipped
smartphones against the distance-based pricing policy
in AFC systems [11], which enables users to pay much
less than what they are supposed to be charged.

e We develop an HCE app to launch the LessPay
attack (detailed in Section 3).

e We evaluate LessPay with real-world large-scale
experiments, which not only demonstrate the feasi-
bility of the attack (with 97.6 percent success rate)
but also shows its low cost in terms of bandwidth
and computation (detailed in Section 4).

e We propose four types of attack countermeasures,
and discuss the feasibility and practicality of deploy-
ing these countermeasures (detailed in Section 5).

2 OVERVIEW OF AN AFC TRANSACTION

This section presents an overview of the working principle
of current AFC transactions, including stored file structure,
entrance protocol, and exit protocol.

File Structure. Among today’s AFC systems, the majority
of AFC cards follow the ISO/IEC 14443 standard. In this
standard, data in a smart card is stored in a very simple file
system, organized in a hierarchical tree structure. Each file
is identified by its unique file identifier. As an example,
Fig. 2 shows the file structure of CTC. The basic card

DANG ETAL.: PRICING DATA TAMPERING IN AUTOMATED FARE COLLECTION WITH NFC-EQUIPPED SMARTPHONES

Metro Data

Transaction History |

Fig. 2. Example: File structure of CTC.

Terminal

Cad (with SAM)
T

Read basic info [I
|

i
Success

> |
| .
_ Request Random Number 1|> Verify

Random Number (R)

> ' Calculate
_Entrance Data (with MAC) |! MAC
< i

Success

\ 4

T R e
A

Fig. 3. The entrance protocol.

information including card number, card type, and expira-
tion is stored under the root directory. The data involved in
the transactions of bus and metro is stored in the purse
directory.

Entrance Protocol. When a passenger (with an AFC card)
wants to enter a station, the AFC system needs to execute
the entrance protocol, as shown in Fig. 3, based on the fol-
lowing three steps.

e First, the station’s terminal requests and reads the
basic information of this passenger’'s AFC card,
including the card number, the expiration, and the
balance. The terminal verifies this information,
including checking the expiration and whether the
balance is sufficient.

e Second, if the above verification succeeds, the terminal
would try to write the entrance data to the Metro
Data file (just using the metro as an example). How-
ever, before writing the entrance data, the AFC card
needs to perform a one-way authentication to the ter-
minal. As shown in Fig. 3, the terminal gets a random
number R from the AFC card, and then calculates a
MAC? using R with a pre-installed key® shared with
this AFC card (right-hand operations in Fig. 5).

e Finally, after generating MAC, the terminal sends
the entrance data with the calculated MAC to the
AFC card. The card performs an external authentica-
tion (shown in Fig. 5): if passed, the entrance data

2. A 2-key 3DES-MAC algorithm in CBC mode is used.

3. The key of each card is unique in practice. Instead of storing all
keys (which is obviously impossible), the key of each card is generated
using a root key and its card number. The root key is stored in a so-
called SAM module attached to the terminal. The terminal uses SAM to
generate the each-card key.

1161

Terminal
(with SAM)
T

Read basic info & [I
|

Card

entrance data

Success

Verify &
i |# Calculate fare

1l_Upload

Debit (with MAC)

Success (with MAC’)

Fig. 4. The exit protocol.

Smart Card |

Terminal

Generate Random
Number (R)

Reject

Fig. 5. External authentication, used by the card to validate the terminal.

would be written on the card. On the other hand, the
external authentication works as follows. As shown
in Fig. 5 (left-hand), the AFC card first encrypts the
random number R with the key shared with the ter-
minal. Because the AFC card has received the termi-
nal’s MAC, which has been computed by encrypting
the same random number R with the same key (the
right-hand operation in Fig. 5), the AFC card can
check whether the terminal’s authentication passes
through comparing the two ciphertexts. If the termi-
nal is fake, the authentication fails.

After the whole procedure completes, the passenger will
be allowed to enter the station, and her AFC card has been
written her entrance information.

Exit Protocol. When the trip is finished, the passenger taps
her card on the exit terminal. The terminal performs the exit
protocol, which is shown in Fig. 4, based on the following
two steps.

e First, the terminal reads the same basic information
as the entrance stage, including the card number and
the expiration, as well as the entrance data from the
card. Then, the terminal verifies the above informa-
tion. If the verification succeeds, the terminal calcu-
lates the fare that the passenger needs to pay. The
verification process is the same as the first step in the
entrance protocol.

e Second, in order to upload the transaction log infor-
mation to the AFC back end, the card and terminal
need to perform a mutual authentication with each
other. In other words, besides the authentication to
the terminal, in this step (called debit checking step),
the terminal also needs to check whether the AFC
card is emulated or fake. The process that the card
authenticates the terminal is almost the same as the

1162 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019
TABLE 1
Metro Entrance Data
Entrance Data Enter Time Metro Line Station Balance When Entering
1 1512051417043D014C1D 2015-12-05 14:17 4 Station A 75.00
2 1511301135020801B009 2015-11-30 11:35 2 Station B 24.80
3 15112215225E1D01ACOD 2015-11-22 15:22 X Station C 35.00
4 15112009560A11016612 2015-11-20 09:56 10 Station D 47.10
5 15111220090401015203 2015-11-12 20:09 1 Station E 8.50

authentication step in the entrance protocol. On the
contrary, i.e., the terminal authenticating the card,
the AFC card needs to use its private transaction key
TK to generate a session key SK and a MAC’ (gener-
ated using the SK), and then sends them to the ter-
minal for the authentication. The most important
property in this step is: a fake or emulated AFC card
cannot have a transaction key to pass the authentication.

After the mutual authentication, the terminal uploads the
transaction information to its back-end database.

When AFC network was isolated from the Internet, the
operators did not pay much attention to the communication
between the card and the terminal. They only cared about
the security of the card. Therefore, the debit procedure is
protected by the secret key and the update of entrance data
is protected by MAC, but the entrance protocol is still vul-
nerable due to the protection is one-way so that the data in
the card is hard to tamper but easy to falsify seen from the
terminal.

3 ATTACK MODEL AND IMPLEMENTATION OF
LESSPAY

As shown in Fig. 1, there are six steps for launching the
LessPay attack (i.e., Step 1-2 and Step 4-7). Step 3 and 8 do
not belong to the attack since they occur on the terminal
side and are not controlled by the attacker. Step 1-2 and
Step 4-7 formulate two important phases in our attack: tam-
pering entrance data and relay attack on AFC card. We next
detail each of the phases.

3.1 Tampering Entrance Data

In order to tamper the entrance data, we need to know two
important pieces of information: 1) the data structure of
entrance data, and 2) the station data, e.g., GPS latitude and
longitude coordinates. In this section, we describe a collec-
tion of approaches to infer the above information.

Collecting Entrance Data. Instead of collecting entrance
data by physically accessing metro stations, we developed a
lightweight app (different from LessPay app) to specifically
collect data listed in Fig. 2. To allure users to download the
app, the app itself provides useful features including pars-
ing the balance and transaction histories (which metro line
and when the user rode, as well as the fare) when the user
taps the card on her NFC smartphone. We distributed this
app in Google Play. With the agreement of our users, we

date & time
(YYMMDDhhmm)

< 10 bytes ———=

2 |balance

aul|
oIEls

u

Fig. 6. Data structure of entrance data.

collected the anonymized data (the card is innominate)
from 97 different cards.

Obtaining Data Structure of Entrance Data. By collecting
the entrance data, we analyze it and try to learn its struc-
ture. For example, Table 1 lists five items of our collected
data. By observing and cross-checking the data, we find that
the metro entrance data contains the following elements:

The entrance time (yyMMddhhmm format, 5 bytes4)
The entrance metro line number (1 byte)

The entrance station identifier (1 byte)

The balance when entering the station (little endian
in 2 bytes, e.g.,, 4C1D represents 0x1D4C (7500)
cents)

Thus, we obtain the structure of entrance data shown in
Fig. 6.

Obtaining Station Information. Rather than collecting station
data by visiting each station (seems impossible), we found a
third-party application called E-Card Tapper [12], which is
able to parse the transaction histories as well as the trip
records and details. Driven by this finding, we reversed this
application using Apktool [13] and dumped the station data
from the inner SQLite database of E-Card Tapper in order to
extract its stored station information, such as the station
identifier.

Besides this basic information on stations, we also need
to infer the GPS latitude and longitude coordinates of each
station. Thus, we get the location coordinates of stations
using Google Maps.

Tampering the Entrance Data. We now already have enough
information (i.e., entrance data structure and station informa-
tion) to tamper the entrance data. In the LessPay implementa-
tion, as shown in Fig. 1, the web server in the cloud is
responsible for generating the fake entrance data based on the
above-collected data. To falsify a piece of valid entrance data,
we simply prepare the legitimate entrance time, station infor-
mation, and the balance. In order to minimize the fare, the
attacker’s cloud needs to generate the proper entrance data
according to the destination. Details about the implementa-
tion of tampering the data are described in Section 3.3.

3.2 Relay Attack on AFC Card

This phase covers Step 4-7 shown in Fig. 1. During this phase,
our purpose is to try to pass the mutual authentication in the
exit protocol (mentioned in Section 2). This is because our
emulated card receives a debit from the terminal, and the
debit is protected by transaction key TK via the generated ses-
sion key SK and MAC' (mentioned in Section 2). In practice,
because a contactless smart card is a combination of MCU

4. Noted using patterns for formatting and parsing in JDK 1.8.

DANG ETAL.: PRICING DATA TAMPERING IN AUTOMATED FARE COLLECTION WITH NFC-EQUIPPED SMARTPHONES

(microcontroller unit, like the most popular Intel 8051) and an
radio frequency (RF) module, under the protection of the
firmware in the MCU, the TK is not readable. Therefore, it is
impossible to emulate an AFC card with debit support. In
other words, the challenge in this phase is how we can get a
transaction key TK for our emulated card to make it pass the
mutual authentication.

We use the physical card equipped with TK to bypass
this security check. This physical card is put in the cloud’s
AFC card pool (see Fig. 1), and it corresponds to the emu-
lated card that receives the debit from the terminal. In other
words, in LessPay, the emulated card should have a corre-
sponding physical AFC card in the cloud-side card pool.
Our intuition here is to make our emulated card act as a
“proxy”-card and make the cloud server together with the
physical card act as a “proxy”-reader. Such a design enables
the emulated card to forward the debit command to the real
card (i.e., the physical card) to generate AM/AC’, because only
that physical card has the needed transaction key TK.

During Step 4-7 in Fig. 1, the debit message transmitted by
the terminal is first received by the “proxy”-card (i.e., the
emulated card) and relayed to the cloud server. The cloud
server will transmit the debit to a physical AFC card. Since
the message is authenticated by MAC, the physical card will
assume that it is communicating with a legitimate terminal
and respond normally. Then, the response is forwarded to
LessPay, which will respond to the terminal with the debit
response. Still, the intact message is authenticated by MAC",
which is identical to a real card, so the terminal cannot distin-
guish between the physical card and our emulated card.

Using such a relay attack, the attacker is able to overcome
the fact that our emulated card lacks TK. Moreover, the
valid MAC" will not cause any inconsistency.

3.3 Implementation

Based on the above two important design phases, the imple-
mentation of the LessPay attack consists of a front-end mobile
app LessPay and a cloud-side service (i.e., the cloud in Fig. 1).
The LessPay app requires an NFC-equipped smartphone
with Android 4.4 or above. Regarding the cloud server side,
any regular server or workstation is enough to meet the sys-
tem requirement.

3.3.1 LessPay Client Implementation

Before HCE techniques are proposed, a secure element is
required to perform the communication with the NFC termi-
nal, and no Android application is involved in the transaction
atall. Nevertheless, since Android 4.4 is released, it is possible
to emulate a card using the HCE technology to emulate an
ISO/IEC 14443 smart card without a secure element. Emu-
lating an AFC card requires the following three features:

An Application ID (AID). When tapping the phone on a
terminal, the HCE service is triggered by a SELECT com-
mand. This is identified by an AID. The AID of CTC is
1PAY.SYS.DDF01, which we use to register our app.

An Emulated Card. An emulated ISO/IEC 14443 card needs
to be implemented for communicating with the terminal. As
we mentioned in Section 2, the data in a card is organized in
files. The file structure of this emulated card is the same as the
structure shown in Fig. 2. The messages transmitted and
received between the card and the terminal are called

1163

application protocol data unit (APDU) [4]. The application-
level protocol is half-duplex, by implementing a process
CommandApdu method: the input is the command APDU that
the reader sends and the output is the response APDU. The
following commands in the standard are implemented in
LessPay:

SELECT: Select a different directory.

READ BINARY: Read data from a specific file.
UPDATE BINARY: Update data in a specific file. As
we mentioned in Section 2, updating a file requires
authentication. According to the standard, it is a
one-way authentication that the card validates the
terminal. In our attack model, we have to trust the
terminal and ignore the MAC unconditionally. As a
result, when the terminal gets a random number, we
simply return a fixed one (see next item) and accept
the MAC without any calculation and comparison.

e GET RANDOM NUMBER: We use a fixed number
00000000 instead of random numbers.

e GET BALANCE: Return the balance of the card. Note
that since the card is reused by many users, there-
fore, the balance is fetched from the cloud when the
app starts and it is updated periodically together
with the fake entrance data.

The Relayed Part. The debit command is protected by TK
and requires mutual authentication (as we mentioned in
Section 3.2). Therefore, the debit command is relayed to the
cloud server. We do not implement this command in an
emulated card. We respond to the terminal whatever the
cloud server returns.

In order to minimize the expected fare, we need to falsify
the entrance data of the closest station. To achieve a better
user experience, we will not ask the user her destination.
Instead, we use the Android API to locate the user via the
Cell-ID and Wi-Fi. We upload the user’s location every two
minutes. In each HTTP request, we send the user’s coordi-
nate and get the balance, the card number (see Fig. 4: card
number is required to generate the 7K, SK, and MAC), as
well as the fake entrance data accordingly.

3.3.2 Cloud-Side Implementation

The configuration of the deployed server is: 2 x 4-core Xeon
CPU E5-2609 @2.50 GHz, 8 GiB memory, 500 GiB 10K-RPM
SAS disk, and a 100 Mbps network. The system on the cloud
side is implemented in Akka, which is a JVM-based concur-
rent system.

Fake Entrance Generator. PostGIS [14], which is a spatial
extender for PostgreSQL object-relational database, is used
to find the nearest station. Since we are targeting a relatively
small area and City X is not located in high latitude, we
choose to use Cartesian distance to measure the distance
rather than the spherical distance for a better performance.

“Proxy”-Card. We use ACR122u contactless smart card
readers to communicate with the AFC cards. In the 100-user
test, we prepared 5 readers and 5 physical cards. The server
itself maintains the usage of different cards. We use an LRU
dispatching algorithm to select a card from the cards that
were not used in the past two minutes when receiving a
request. Each card is set to the state IN USE for 2 minutes
once we send the card number to the app. After a successful

1164

HTTP Request \

Dispatcher
New client: In-use client:

Fetch a new card Read from pool
,—-—-—-] Timeout / R
I “Tansaction | -
] I
I Card 1 Card 1 [}

'

)

| Finished 1
| | |
) N g

Fig. 7. Card pool scheduler.

HTTP Response

\

Pl

Card Pool

_

transaction or timing out, the state is set to AVAILABLE
again. The scheduler is shown in Fig. 7.

4 PERFORMANCE EVALUATION

This section evaluates LessPay through attacking real-world
AFC systems in City X. In the evaluation, we aim to answer
the following three questions:

e How much money users can “save” through using
LessPay (in Section 4.2)?

e What is the overhead of using LessPay (in Section
4.3)?

e Whether LessPay can support a large number of
users (in Section 4.4)?

4.1 Experimental Setup
We recruited 100 volunteers to use LessPay. These users are
equipped with HCE Android smartphones. The phone
models we used are Samsung Galaxy S5, Huawei Mate 7,
Moto XT1095, and LGE Nexus 5X. 62 users use LTE-TDD
network, and the others use LTE-FDD network.

The experiment lasted for three months (from Jan. 10th to
Apr. 10th, 2016). Each user was asked to use LessPay 40
times per month, with a total of 12,000 tests performed.

4.2 How Much We Can Save?

We now answer the first evaluation question: how much
money users can “save”? The metro fares in City X vary from
$3 to $9 (in the local currency) according to the distance. Dur-
ing the 12,000 tests, the “legitimate” fares are presented in
Fig. 8a. The average fare that users should pay is $5.03. By
using the LessPay app, all users only need to pay $3 instead of

Failure|
2.4%

(a) Users should pay the fares from
$3 to $9.

(b) Except for 2.4% failures, users
actually paid only $3.

Fig. 8. The fares that users should pay and actually paid.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

20

10+

CPU Usage (%)

,Jwﬂt‘l'h ,

S vn_J.UlU
S

24
Hour

Fig. 9. CPU overhead of the cloud-side server.

the original fare (i.e., without using LessPay). This is clear
using LessPay enables users to pay less than the users should
pay. $25,181 in total is “saved” (see Fig. 8b).

As shown in Fig. 8b, we also noticed that among these
tests, there are 2.4 percent cases that do not succeed, which
means these 2.4 percent attacks fail to “save” the money.
According to the log, we found that the reason for attack
failures is the poor network connection—the DEBIT com-
mand requires a relatively good quality connection.

4.3 System Overhead

We evaluate the overhead of LessPay based on two aspects:
client-side overhead and cloud-side overhead. The former
one means the overhead on smartphones, while the latter
one means the overhead on the cloud server side.

Client-Side Overhead. The client-side overhead of LessPay
comes from three sources: memory, network traffic, and bat-
tery usage. The typical memory usage is 20 MiB, which is
moderate.

In terms of bandwidth overhead, our measured results
show that the size of a single request is 48 bytes (16-byte
location and 32-byte user token). The size of a single
response is 20 bytes (6-byte card number, 4-byte balance,
and 10-byte entrance data). Including TCP handshakes, and
TCP/HTTP headers, the total network traffic cost is less
than 1 KB. The cumulative distribution function (CDF) of
network traffic consumed in these 12,000 tests are shown in
Fig. 10. The average network traffic in all tests is 21.8 KB,
which costs only cents. For 80 percent users, the network
traffic cost is less than 36 KB. The average total traffic cost in
a month (calculated over 40 trips) is less than 1 MB.

To understand the overhead of LessPay on battery life,
we record the battery power consumption in these tests. As
shown in Fig. 11, the average power consumption per trip is
3.4 mWh, which is extremely low given that the battery
capacity of popular smartphones lies between 5-20 Wh [15].

Cloud-Side Overhead. Fig. 9 illustrates the CPU utilization
of the server on a typical day. The web service is not a

1.0
081
a 06 Maximum traffic: 94.8 KB| |
O o4l Minimum traffic: 1.5 KB
Average traffic: 21.8 KB
0.2r Median traffic: 18.5 KB
0 20 40 60 80 100

Traffic (KB)

Fig. 10. The network traffic consumed in LessPay.

DANG ETAL.: PRICING DATA TAMPERING IN AUTOMATED FARE COLLECTION WITH NFC-EQUIPPED SMARTPHONES

1.0
0.8}
w 067 Maximum power: 15.4 mWh| "
8 04t Minimum power: 0.2 mWh
' Average power: 3.4 mWh
0.2} : > Median power 2.9 mWh
0 4 8 12 16

Battery Power (mWh)

Fig. 11. The battery power consumed in LessPay.

CPU-bound application. In most time, the CPU usage is as
low as 1 ~ 2 percent. Even in rush hours (e.g., 7-9 A.M.),
the CPU usage is below 15 percent.

The inbound/outbound bandwidth for the cloud-side
server is quite low. There is no network traffic when no
users turn the app on. As we pointed out, the traffic in
each round-trip is less than 1 KB. As a result, network with
100 Mbps bandwidth is able to serve hundreds of thousands
of users.

4.4 Scalability

We now explore whether LessPay can scale to a large num-
ber of users. The scalability of LessPay depends on the num-
ber of physical cards in the cloud-side card pool. In other
words, more physical cards can make LessPay support
more users. In order to evaluate the scalability of LessPay,
we conducted a simulation study. The simulation assumes:
1) users use LessPay during rush hours, 2) all the users use
LessPay within two hours, and 3) users’ arrivals follow the
Poisson distribution. The user can be denied service if she
has to wait for longer than 15 seconds. We present the simu-
lation results—the relationship between the number of
users LessPay can support and the number of physical cards
in the card pool—in Fig. 12. We also choose different service
denial rates (0.1 and 0.2) to evaluate the scalability of Less-
Pay under different environments. As shown in Fig. 12,
even during rush hours, maintaining a card pool size of 150
will satisfy 10,000 users’ need, which means LessPay can
serve much more users by simply adding a few more cards
to the pool. Thus, we conclude that LessPay scales well to a
large number of users by only maintaining a moderate-
sized AFC card pool at the cloud-side.

5 COUNTERMEASURES

In order to defend against the constructed relay attacks, this
section proposes four types of countermeasures: 1) limiting
frame waiting time, or FWT (Section 5.1); 2) protecting the
entrance data (Section 5.2); 3) computing fare based on

16000

— Service denial rate = 0.1
| — Service denial rate = 0.2

Users
8000

0 50 100 150 200
Card Pool Size

Fig. 12. The number of users that the card pool can support.

1165

Terminal RF Card RF Terminal

I: L | {:I
| |
| td |

Terminal

RF LTE RF RF LTE
Terminal|—> Proxy |—>| Cloud |—>| Card |—>| Cloud |—>
I‘— tp1 —>| I ta ‘I
I ti

Fig. 13. The upper part shows a direct communication. The lower part
shows a relayed communication.

RF
Proxy |—>
|<—— tp2 —»‘
|

online data-sharing (Section 5.3); and 4) dynamic QR code
to replace AFC cards.

For each type of countermeasures, we first present the
design and workflow of the countermeasure. Then, we
describe the implementation, real-world deployment and
experiment of the countermeasure. Finally, we discuss the
countermeasure’s advantages, disadvantages, and feasibil-
ity. Note that in the second type of countermeasure, we
present four defenses corresponding to different levels of
protection techniques: appending message authentication
code to the entrance data (Section 5.2.1), encrypting the
entrance data (Section 5.2.2), and ISO/IEC 7816-4 secure
messaging (Section 5.2.3).

At the end of this section, we summarize the advantages
and disadvantages of all the countermeasures (Section 5.5)
and show the comparison results in Table 3.

5.1 Limiting Frame Waiting Time (FWT)

As shown in Fig. 1, we notice during the debit step, LessPay
introduces an extra delay, which is caused by the additional
wireless communication channel and HCE. In particular,
Fig. 13 shows the communication difference between a nor-
mal case and a relay-attack case.

Driven by the insight shown in Fig. 13, we propose the
first type of countermeasure that can quantify the delay in
the debit step, thus detecting suspicious relay attacks. We
call this countermeasure as limiting FWT approach.

Deployment and Experiments. We implement a limiting
FWT-based approach which can measure the round-trip
times of different commands using a commercial contactless
card reader (HD-100) directly (i.e., t; in Fig. 13), and indi-
rectly (i.e., ¢; in Fig. 13). Fig. 14 presents our experiments
that measure the round-trip times (in milliseconds) of the
four selected commands in our implementation. Specifi-
cally, these four commands include:

(1) GET BALANCE aims to read the balance stored in
EEPROM. The response of this command is 6 bytes
long.

(2) LOAD is responsible for computing a message
authentication code. The response of this command
is 18 bytes long.

(3) INTERNAL AUTHENTICATION is used to encrypt
data through 2-key 3DES algorithm [16], and the
response of this command is 10 bytes long. The rea-
son that our experiments used 2-key 3DES algorithm
(rather than AES) is that prevalent AFC systems
keep using 2-key 3DES algorithm in practice due to
historical reasons and deployment overhead. Given
the fact that we are targeting currently in-use AFC

1166 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019
(a) Get balance (b) Load (c) Internal authentication (d) Read info
40 ¢ 80
50 80"
30 60 [40 -
@ 26.10 gor 58.73
é — 49.41 32.00 :
30
g 20 40| —— 26.19
i~ 40 -
29.25 20
10 10.13 — 20 [-L
10l o0 20.31
4.30 — 8.48 — 6.62 — 13.97 —

LessPay NFC- Physical
eSE Card

LessPay NFC- Physical
eSE Card

Fig. 14. RTT (in milliseconds) of different commands and targets.

systems, our experiments employ 2-key 3DES,
despite the fact that AES works better than
3DES [17].
READ INFO’s main purpose is to read the data stored
in EEPROM. The response of this command is 62
bytes long.

In our experiments, we select a physical card, our Less-
Pay app,” and a well-applied NFC-eSE based card for com-
parison. The physical card contains a microcontroller
(MCU) and a crypto coprocessor. The NFC-eSE based card
is embedded in Xiaomi MI 5, and the NFC part is supported
by NXP PN66T, which employs NXP SmartMX as the Java
Card VM. Our experiment result is collected from 100 tests.
The density of distribution is recorded and presented based
on the width of each RTT, and the time on the top-right of
each plot is the average RTT in each case.

Based on the RTT of the relay (Fig. 14), we observe that
the time consumed in LessPay is typically much longer
when accessing EEPROM (i.e., command GET BALANCE in
(a) and command READ INFO in (d)). However, when com-
mands require cryptographic-related operations, the NFC-
eSE based card also slows down. In the load command case,
it takes more time than LessPay. We believe this is caused
by the low performance of Java Card VM. As a result, it is
possible to detect the attack by enforcing stricter timing
restrictions. But by doing so, the legitimate NFC-eSE solu-
tion is also banned.

We also notice that deploying the FWT countermeasure
may have some practical issues. First, a restrictive timeout
value can lead to valid transactions rejected, especially with
the NFC-eSE based cards. Second, for a standardized termi-
nal, the maximum interval between the end of a frame sent
by the terminal and the start of the response frame from the
card, i.e., FWT, is determined by the card. The FWT is calcu-
lated from the frame waiting time integer (FWI) using the
formula

)

1 ;
FWT = (256 XTG) x 2T

&

where f. = 13.56 MHz, varying from 302s (FWI = 0) to 4949
ms (FWI = 14). FWI is specified during initialization and

5. Under a good network condition; the network in the metro station
is slower.

LessPay NFC- Physical
eSE Card

LessPay NFC- Physical
eSE Card

anti-collision. Therefore, the response delay can be up to
nearly 5 s for a standardized terminal, which makes it difficult
to cope with the problem. Therefore, in this countermeasure,
the terminal should not follow the FWT indicated by a card.

To evaluate the effectiveness of this countermeasure, we
set up an experimental AFC environment. We employed
the following equipment:

LANDI APOS A8 POS terminal
C-Union PSAM card
Physical C-Union traffic card

e NFC-eSE C-Union traffic card

C-Union is a widely-applied standard in China, with hun-
dreds of millions of cards issued. In the experiment, we
choose different FWTs instead of following the FWT claimed
by the card, then we conduct 100 purchases for the physical
C-Union traffic card, the NFC-eSE C-Union traffic card, and
LessPay, and measure the accept rate of each case. The com-
plete purchase process is shown in Fig. 15, and the FWT is
limited in Step 8 because in this step, the cryptographic algo-
rithm is applied, while in other steps, LessPay is able to pre-
replay the required data and no relay is required.

The accept rates of various FWTs are shown in Fig. 16.
Under the experimental condition, selecting a reasonable
FWT is impossible. There is no significant boundary to dis-
tinguish LessPay and NFC-eSE. However, in metro stations,
the RTT of LessPay is usually twice or triple of RTT in the

SAM POS card

m— 1. read info —»

1
|
1
1
1 E]<— 2. card info
1
| E]— 3. debit ——»|
|
1
1
ﬂ 6. MAC ——»
l
|I|— 7. confirm debit —»|

[[]e— 4. data for debit —

< 8. data with MAC’ —|
9. verify MAC’ —E]
10. result —>|I|
1

1
5. verify data —|I|
Fig. 15. The debit process of C-Union.

N Tt SO oy, B oy B

DANG ETAL.: PRICING DATA TAMPERING IN AUTOMATED FARE COLLECTION WITH NFC-EQUIPPED SMARTPHONES

1.0
Q@ 0.8}
©
0C 0.6f
°a
8 04 — Physical Card
e LessPay
< [

0.2 — NFC-eSE

0 20 40 60 80

FWT (ms)

Fig. 16. Accept rates of various FWTs.

experimental environment, which varies in different sta-
tions. It seems that in metro stations, setting FWT to 60 ms
is a reasonable choice. Unfortunately, due to the rapid
change of network quality, this FWT may not apply in the
future. To dynamically change the FWT, we may install cel-
lular modules to measure the network quality. In particular,
we measure the RTT of certain hosts (e.g., the DNS servers
of the ISP) periodically, and set the FWT to the minimum
value between the measured RTT and 60 ms (the upper
bound of communication time using NFC-eSE).

Discussions. An obvious advantage of the limiting FWT
approach is the approach can be directly used to detect
relay attacks without changing AFC cards or AFC transac-
tion protocol. In other words, it is easy to deploy in practice.
However, as shown in our experiment results, such a coun-
termeasure cannot work very well because some parame-
ters of AFC terminals, e.g., restrictive timeout and time
interval, significantly affect the accuracy.

5.2 Protecting the Entrance Data

Besides the communication delay during the debit phase,
another major difference between the normal case and the
relay attack case should be the entrance data. This is
because LessPay cannot create an entrance data as an offi-
cial terminal does. Inspired by the above observation, we
propose the second group of countermeasure that protects
the entrance data based on security techniques.

In this type of countermeasure, we present three sub-
groups corresponding to different levels of protection tech-
niques: appending message authentication code to the
entrance data (Section 5.2.1), encrypting the entrance data
(Section 5.2.2), and ISO/IEC 7816-4 secure messaging
(Section 5.2.3).

5.2.1 Appending MAC to the Entrance Data

To protect the entrance data, we first propose a solution that
checks for the entrance data based on a message authentica-
tion code along with the entrance data. This countermea-
sure should include two important components.

e First, it is necessary to adopt one key for each card
strategy through key derivation technique; other-
wise, simply appending MAC cannot defend against
relay attacks, because attackers can build a Peer-to-
Peer network to share the valid entrance data
together with the MACs from all the terminals. Spe-
cifically, in our one key for each card strategy, the
derived key DK should be DK = Encrypt(MK, SN),
where MK is the master key stored in the terminal
or the SAM, SN is the card number, and Encrypt(.)

1167

POS card

I
I
' Ij} 1. read card number H
I
1
I
1

]
2. card number

3. card number with _
data and fixed IV E:I

1
I
1
:
4. computed MAC —>|j:| .
|
1
I
1

1
i D]Q 5. verify MAC

Fig. 17. The procedure of verifying MAC using SAM.

is the 2-key 3DES encryption algorithm [18], [19].
DK is used as the key of the 2-key 3DES-MAC in
CBC mode, which differs in different cards. The rea-
son for using 2-key 3DES-MAC in CBC mode is to
keep compatible with the old system so that the
SAM can be applied directly. The process which con-
ducts a SAM card is shown in Fig. 17.

e The second key component is the validation of
entrance time (i.e., step 5 in Fig. 17). Note that the
one key for each card strategy itself cannot prevent
attackers from replaying the entrance data produced
by themselves.

Deployment and Experiments. We have implemented the
above countermeasure, i.e., appending MAC to the entrance
data, based on two existing techniques, respectively, for
comparison purpose.

(1) MCU. We conduct a widely-deployed MCU—
STM32F103, which is ARM Cortex-M3 based and
running at 72 MHz—to implement the 3DES-MAC
algorithm.

(2) SAM. A secure access module is usually used to
store secret keys and execute cryptographic algo-
rithms. We conduct an Android-based POS terminal
with a COTS SAM card and run the same test.

The experimental results are presented in Fig. 18.
Because there is no operating system when using MCU, the
running time of 8 bytes input data is only 0.928 ms (based
on STM32 cryptographic library and 01 compilation optimi-
zation), whose cost can be ignored (since a typical transac-
tion costs several hundreds of milliseconds). While the
average running time of 8 bytes input data is 59.36 ms, run-
ning on the Android-based terminal. It is much higher than
the former test but still acceptable considering the transac-
tion time.

We also notice that a practical limitation for this counter-
measure is that MAC is stored statically. As a consequence,
reading partial data, e.g., the entrance time, using READ
BINARY command is possible but the terminal cannot deter-
mine whether it is modified.

MCU

SAM -

0 20 40 60 80
Time (ms)

Fig. 18. Computation time of 3DES-MAC.

1168

POS card
1
E} 1. read card number »|
E:I<— 2. card number

1
1
4. decrypted data —>|I|
1
1

SAM

3. card number
with encrypted data
and fixed IV

Fig. 19. The procedure of decrypting data using SAM.

Discussions. Appending MAC is effective against relay
attacks, and does not need to change anything on the AFC
cards or the back-end service. Despite the effectiveness, this
countermeasure has the following two disadvantages. First,
the AFC transaction protocol has to be changed, which will
lead to a lot of additional efforts on the AFC terminal side.
To save time and effort as much as possible, we suggest
using the over-the-air (OTA) programming to upgrade the
firmware remotely, which is adequate for applying the first
two group of countermeasures. Second, because MAC is
appended, additional computational overhead is added to
the protocols, which introduces a slight delay.

5.2.2 Encrypting the Entrance Data

Similar to the approach of appending MAC, another way to
protect the entrance data is to encrypt the entrance data.
Fig. 19 shows an encryption-based approach (adopted in a
SAM card) against relay attacks, which has no significant
difference from MAC. The SAM in this countermeasure
checks the information offered by AFC cards and sends the
decrypted data to the POS terminal.

Deployment and Experiments. We implemented the
encryption-based countermeasure based on 3DES-CBC
scheme. We conducted the same experiments as what we
did for the appending MAC approach in Section 5.2.1. The
experiments use the same condition and configuration.
Fig. 20 presents our experiment results.

There is no significant difference in cost between
encrypting the entrance data and appending MAC to the
entrance data. Both methods keep the proofs that indicate
no modification is made since the whole entrance data is
written. In this countermeasure, reading partial data is no
longer possible, due to the property of 3DES-CBC scheme.
In addition, encrypting data makes it more difficult to ana-
lyze the usage of data in different files. But it also sacrifices
the possibility to parse data from the card without keys.
After encrypting data, apps like E-Card Tapper can be only
provided by the operator and used online due to data has to
be decrypted remotely.

Discussions. An encryption-based approach is another
effective countermeasure against relay attacks. However,

MCU

SAM -

1 1 1 J

40 60 80
Time (ms)

Fig. 20. Computation time of 3DES.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

Without SM f

With SM {

Time (ms)

Fig. 21. Communication time (milliseconds) of reading 8 bytes data.

given the fact that its principle is similar to MAC-based coun-
termeasure, the disadvantages are the same. One of the disad-
vantages is this approach also needs to modify the protocol,
potentially introducing additional labors. However, com-
pared with MAC-based countermeasures, the encryption-
based countermeasure should be more expensive, because
most of the encryption operations may introduce more
computational overhead than MAC computation.

5.2.3 ISO/IEC 7816-4 Secure Messaging

ISO/IEC 7816-4 provides a type of mechanism for secure
messaging. It allows encrypted data to be transmitted
between the card and the terminal. The basic securing mes-
saging is also a challenge-response procedure:

(1) The terminal sends a GET RANDOM command, and
the card replies the random number rnd.

The terminal sends a READ BINARY command, and
the card replies data in ciphertext or plaintext
(according to the card operating system) and uses
rnd as initial vector (IV) to encrypt or calculate MAC.

Deployment and Experiments. We developed this counter-
measure based on the above design, and measure the com-
munication time of reading 8 bytes with and without secure
messaging (SM) by 100 experimental runs. Fig. 21 shows the
evaluation results.

The cost, which is only less than 10 ms, is quite small. How-
ever, it also faces the same threat we mentioned in Section
5.2.1 that attackers may replay the random number. As a
result, the entrance time must be verified carefully. And the
operator may still suffer from a potential attack. Furthermore,
not only does applying this countermeasure require upgrad-
ing the terminals, but it also requires replacing or reprogram-
ming the cards, which will cost millions of dollars.

Discussions. Compared with appending MAC and encr-
ypting data, challenge-response authentication can provide
dynamic data protection, which has been demonstrated
more secure. However, this countermeasure needs to mod-
ify both AFC cards (reprogram or replace) and terminals,
which need to a lot of efforts.

2

5.3 Computing Fare via Online Data-Sharing

Due to the poor network connection in the late 20th and
early 21th centuries, the AFC network decided to use the
offline solution. However, the success of contactless pay-
ment in financial systems like Visa payWave [20] and Mas-
terCard Contactless [21] reveals that the network condition
is no longer a problem.

In online fare calculation systems, when a user taps her
card at the entrance terminal, the terminal simply verifies
the card offline. Once the card contains a valid digital signa-
ture or MAC, the doors open and the entrance data will be

DANG ETAL.: PRICING DATA TAMPERING IN AUTOMATED FARE COLLECTION WITH NFC-EQUIPPED SMARTPHONES

Delayed Upload A
e

AFC Backend Server

User Account
Transaction
Data

i i
Entrance Exit

Fig. 22. Online fare calculation.

uploaded to AFC back end. When this user taps her card at
the exit terminal, the terminal verifies the card again. If it
passes the verification, the user will be billed then. The pro-
cess is shown in Fig. 22. Because all the data (including
entrance and exit information of the same AFC card) is
uploaded and stored in the AFC back end, no external
attackers can modify the information.

Except for its security, online fare calculation also has
several advantages compared with traditional procedures:

e No Top-Up Needed. Since the fare is debited from
users’ accounts, the top-up is no longer needed.

o Easy Applied Marketing Strategies. Discounting for
transfers and multiple rides is quite easy to apply
because all of the fares are calculated after rides daily
or even weekly.

One of the most typical examples of online fare calcula-
tion is in London. Contactless payments were launched on
London’s buses in 2012. And it costs 2 years to accept con-
tactless payments in London transport. In London, users
are billed at the end of the day instead of exiting stations.

Migrating the current AFC system to online fare calcula-
tion system may cost a huge amount of money. For exam-
ple, each terminal costs $200 and a large city owns 20,000
buses, 150 metro stations. If there are 2 terminals on a bus
and 40 terminals in a station, the total number of terminals
is 46,000 and the total cost should be around 9.2 million US
dollars.

In order to reduce the cost, we propose a procedure to
utilize the currently in-use cards. Particularly, a user should
associate a payment account with her AFC card, and the
existing challenge-response mechanism can be used for
authentication. Then the fare can be calculated later.

Besides, the AFC system may introduce contactless bank
cards since they usually support offline data authentication
using the Public Key Infrastructure (PKI) technology, and
accordingly, the fare can be directly credited from users’
bank cards.

Discussions. The online fare calculation can offer the high-
est level of security because the computation of this
approach is performed on the cloud side. Thus, any external
attacks, e.g., the attackers who want to perform relay
attacks, cannot bypass the terminal checking with modified
data. However, all the terminals and the back-end system
need to be updated, which is a big cost.

1169

client POS

1] 1
E]i 1. apply for QR' code payment
2. user’s info & public key (signed by issuer)
b 3. generate QR code
(signed by client)

[‘E]— 4. show QR code —»|

issuer

5. verify issuer &
client data

1
1
| 6. entrance/exit
1
1
1

data
I

E]di 7. user notification
1

Fig. 23. The Quick Response (QR) code-based payment method without
using an AFC card.

5.4 Using Dynamic QR Codes Instead of AFC Cards
Motivated by the popularity of Quick Response code scan-
ning payment in China, we propose a possible solution
using dynamic QR code for public transportation, targeted
at the AFC environment where almost everything works
offline.

The designed process of using a QR code for public
transportation is shown in Fig. 23: with no secure element
involved, there is no such balance in the mobile app. Before
using a QR code for public transportation, a user must pro-
vide his or her payment account to the issuer for the
delayed payment. The issuer then generates a set of data
including the identification of the user and the expiration of
QR code. It also generates a pair of asymmetric keys (stored
in the mobile phone for offline data signing). The issuer
should sign these data (but the private key) to avoid being
forged. We call them online generated data. Note that the sig-
nature is generated using the issuer’s private key.

To support offline use, the client needs to generate the
QR code containing online generated data along with the cur-
rent time (for preventing replaying) and the signature of
these data using the client’s private key. Note that the client
is always possible to generate new QR code offline before
the expiration of online generated data. Once the POS terminal
scans the QR code, it verifies the signature of online generated
data by holding the public key of the issuer and the signa-
ture signed by the client using the pre-verified public key
which is contained in the online generated data. After these
steps, the terminal allows the user to enter or exit and then
uploads the data of QR code to the server for further notifi-
cation and payment.

The issuer can adjust the expiration to achieve the trade-
off between the duration of offline usage and the potential
risk.

Implementation and Experiments. As a totally different
method, we have implemented this countermeasure on
Android (Xiaomi 5 with Qualcomm Snapdragon 820 proces-
sor @ 1.8 GHz) side for generating QR code, MCU
(STM32F103) side for verifying QR code, and server (in
Section 3.3.2) side for generating secret keys. The complete
data elements are listed in Table 2. We use Ed25519 [22] as
the signing and verifying algorithm.

The QR code example is shown in Fig. 26, in which the
expiration of the online generated data is set to 2018-2-15
08:00:00 (UTC), and the QR code generation time is set to

1170
TABLE 2
Data Elements Contained in the QR Code
Element Length Description
Online 1 UserID 8 Identification of user
generated 2 Expiration 4 Expiration of online
data generated data
3 User'spublic 32 Different in each
key generation
Signature of online
. generated data
4 Signature 64 (element 1-3, using
issuer’s private key)
Offline Timestamp 4 Timestamp of QR code
generated creation
data Signature of the entire
6 Signature 64 data elements (using

user’s private key)

2018-2-14 22:00:00 (UTC). To verify the QR code, the issuer’s
public key (OFD7E339ED16FEE6CAC84E300B01E4 -
F39AAC962E1E68443545E119CEBF8E6103) is installed
in the MCU. It first verifies signaturel using this public
key. Once the verification is passed, the public key (#3) of
the user can be retrieved, and consequently, signature2
can be verified.

According to the design, Step 1 is only needed for the
first time a user registers; Step 2 shows up occasionally
(new online generated data will be generated only after its
expiration); Step 3-7 exist in every usage. To measure the
performance of this design, we conducted 100 tests. In these
tests, the client downloads online generated data every time
(which may happen in low frequency uses), and then gener-
ates the corresponding QR code. We use a commercial QR
code decoder that is connected to the MCU via serial port,
and use the decoder to scan and decode the QR code on the
mobile phone. Finally, the QR code is verified in the MCU
and it notifies our server via an ethernet module. The result
is shown in Figs. 24 and 25, which indicates that it is a rela-
tively traffic-saving solution. Note that the time consumed
in Step 4 is not included in Fig. 24 because it depends on the
position of how we show the screen to the terminal. For
daily use, Step 2 is not involved. Therefore, we also measure
the running time of signing data (Step 3) and verifying data
(Step 5). During the 100 tests, the signing time on the mobile
phone is less than 1 ms. The verifying time on the MCU is,
however, as high as 856 ms, which indicates that such low-
performance MCU should not be used to perform ECC
calculation.

Discussions. Using dynamic QR code, which achieves the
lowest cost on the passenger side, entirely replaces the

1.0F

Maximum: 1469 ms
08| Minimum: 1216 ms
0.6 |-|Average: 1358 ms

0.4 [|Median: 1357 ms

02 .__/
0.0 ¥ ; : : ; ;
1200 1250 1300 1350 1400 1450 1500
Time (ms)

CDF

Fig. 24. Time consumed in QR code-based payment.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

1.0F ‘ : : .
0.8f - /_]
u 06 Maximum: 97.5 KB | |
© 04 Minimum: 82.9 KB |1
0.2F Average: 90.2 KB
0.0 : ‘ Median:i90.0 KB |
80 85 90 95 100

Traffic (KB)

Fig. 25. Network traffic consumed in QR code-based payment.

medium of AFC systems. However, all the terminals and
the back-end system need to be upgraded. Besides, there
are also several disadvantages: 1) the user must open app
manually, which may reduce the speed of entrance or exit;
2) there is no secure element involved, therefore writing a
secure app becomes a challenge.

5.5 Summary

Table 3 presents a summary of the six countermeasures (in
four groups) proposed in this section. As the only one coun-
termeasure that does not need to replace both AFC cards
and protocols, limiting FWT approach offers the lowest
effectiveness. On the contrary, the online fare calculation
approach and the dynamic QR code approach provide the
best effectiveness but need to upgrade lots of components,
which leads to big additional efforts. Between the two
extreme cases, using MAC, encryption and secure messing
can also provide reasonable defense against relay attacks,
and at the same time introduce additional overhead and
protocol modification.

To sum up, which countermeasure can be used in prac-
tice relies on specific scenarios and purposes at hand. We
believe our proposed six countermeasures have provided
enough choice spaces for defending against the LessPay
attack.

6 RELATED WORK

This section reviews previous studies on relay attack and
attacks on contactless payment, smart card, and AFC
system.

Relay Attack. Attackers have been trying to implement a
relay attack using various approaches. Initially, researchers
built specific hardware to relay the communication between
a smart card and a terminal. Hancke et al. [23] used a self-
built hardware to increase the distance up to 50 m. They
also deeply reviewed relay attacks in [24], discussing relay
resistant mechanisms.

With the development of NFC, recent works have
focused on relay attacks using mobile phones. Nokia 6131

0000000012345678 (user ID)S5A853E00 (expiration)062C6
C7336106367DC89A5093B5C2855BF8EDAL6F2168C913CBBF66
86207CCBO (public key)AS5424E8D2F12A4AE4AF536D8ESCIOE
484FC88745A30FB49B13E9DA22C79796FCT78E3F9705092B2F5
78483BFA67356210D045C25B409EBD3833FF80604E18CE701
(signaturel) 5A84B160 (generated time) 39C32E866B06AA
9F5A80FA35A1F55C25D48F0B2DES1F3447A3D04C462E41857B
F93598BFC1ASE4F721005A05CD91057305ABEA2675CF4BAOFC
97ASFD8F630B08 (signature2)

Fig. 26. An example of the QR code generated by our implementation,
as well as its implications.

DANG ETAL.: PRICING DATA TAMPERING IN AUTOMATED FARE COLLECTION WITH NFC-EQUIPPED SMARTPHONES 171

TABLE 3
Summary of Countermeasures
Countermeasures Pros. Cons. Effectiveness Cost
No replaceme;nt Ticket tokens vary from types,
1 Limiting FWT of cards required. which makes it hard to Low Low
The reading/writing determine FWT.
protocol keeps unchanged.
No replacement of cards MAC can be replayed.
) required. Protocol must be modified))
21 Appending MAC Apps that can parse data due to the extra verification. Medium Medium
(e.g., transaction records)
still work.
No replacement of cards Protocol must be modified
required. because of the extra
22 Encrypting data Hard to replay. verification. Medium Medium
A proprietary app is
required to parse data.
Challenge-response based Protocol must be modified
authentication. because of the extra
. Dynamic data protection. verification. . . .
2.3 Secure messaging Cards need to be replaced or Medium Medium to high
reprogrammed.
Random number can be
replayed.
Impossible to falsify data. Hard to ensure high network
3 Online fare calculation =~ Operators may run various coverage. High High
sales strategy.
Impossible to falsify data. Terminals and back-end
4 Dynamic QR code Low cost on the passenger service need to be upgraded. High High

side.

was the first phone ever produced with NFC capability.
Francis et al. [25] revealed the possibility to perform a relay
attack using COTS devices. In [25], [26], [27], researchers
performed relay attacks using Nokia mobile phones and
discussed the feasibility of some countermeasures, such as
timing and distance bounding.

More recently, researchers focused on relay attacks with
Android mobile phones. Roland et al. [28], [29] described
relay attack equipment and procedures on Android phones.
Lee [30] demonstrated an open-source software NFCProxy
that proxies transactions using Android phones. Korak [31]
compared timing on relay attacks using different communi-
cation channels. Still, some other work relates to privacy or
human interaction issues [32], [33], [34].

Contactless Payment. Extracting information from the
transaction communication between a credit card and a
POS terminal using eavesdropping is possible. Haselsteiner
and Beitfuf$ [35] showed a possible way to eavesdrop NFC.
They suggested that, while normal communication distan-
ces for NFC are up to 10 cm, eavesdropping is possible
even if there is a distance of several meters between the
attacker and the attacked devices. However, this informa-
tion (mainly credit card numbers, and expiration) can be
obtained directly via NFC or even through social engineer-
ing. Paget [36] showed the process and later encode this
information and wrote to magnetic stripe cards. This attack
is also known as downgrade attack, which may not apply

nowadays, due to banks refusing magnetic stripe cards
and migrating to Chip and PIN.

Smart Card and AFC System. Originally, the MIFARE chip,
which is a memory card chip, was developed as a solution
for AFC. In 1994, an AFC system based on MIFARE was first
deployed in Oslo, Norway. Ten years after its introduction,
the MIFARE Classic was seen as the major candidate for
AFC systems. In 2008, however, researchers discovered a
serious security flaw in MIFARE Classic cards [37], [38],
[39]. In particular, the cipher algorithm used in MIFARE
Classic, known as CRYPTOI, has been reversed and recon-
structed in detail, and a relatively easy method to retrieve
cryptographic keys was revealed. Since then, the AFC cards
have been gradually replaced by processor cards globally.

According to a public report, in Dec. 2010, two engineers
from Qihoo exploited the flaw of MIFARE Classic chip to
crack four Beijing Municipal Administration Traffic Cards
and modified the balances. Ref. [40] Beijing had stopped
issuing the MIFARE Classic card since then. The newly issu-
ing cards are processor cards, which are the cards we used
in our attack model.

7 CONCLUSIONS

Today’s AFC systems have been globally adopted and
billions of AFC cards have been issued all over the world.
Among these systems, ISO/IEC 14443 is the main protocol

1172

used worldwide, being near universal in East Asia and
Europe, and in its early adoption in the rest of the world.

Under the above background, this paper proposes a new
relay attack on AFC systems, which enables users to pay
much less than actually required by providing fake entrance
data. The relay attack is scalable and invisible to AFC sys-
tem operators. We have developed an HCE app, named
LessPay, based on our proposed and reported attack, and
evaluated the LessPay app through real-world experiments.
The evaluation results demonstrate the feasibility, practical-
ity and scalability of our approach.

To handle the constructed relay attack, we finally propose
four types of countermeasures against the constructed relay
attack. We implement, deploy and evaluate these counter-
measures, and also provide the analysis of these approaches.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program
of China under grant 2018YFB1004700, the High-Tech R&D
Program of China (“863—-China Cloud” Major Program)
under grant 2015AA01A201, the National Natural Science
Foundation of China (NSFC) under grants 61471217,
61432002 and 61632020. M. Li is supported by the Singapore
MOE Tier-1 grant RG125/17, Tier-2 grant MOE2016-T2-2-
023, and NTU CoE grant M4081879. Aziz Mohaisen is sup-
ported by NSF under grant CNS-1643207 and NRF under
grant NRF-2016K1A1A2912757.

REFERENCES

[1] E. Barker and N. Mouha, Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher. Gaithersburg, MD,
USA: United States National Institute of Standards and Technol-
ogy, 2017.

[2] NIST-FIPS, Announcing the Advanced Encryption Standard (AES).
Gaithersburg, MD, USA: United States National Institute of Stand-
ards and Technology, 2001.

[3] Information Technology—Security Techniques—Message Authentication
Codes (MACs) Part 1: Mechanisms Using a Block Cipher, 1ISO/IEC
Standard 9797-1:2011.

[4] Identification Cards Integrated Circuit Cards - Part 4: Organization,
Security and Commands for Interchange, ISO/IEC Standard 7816-
4:2013.

[5]1 City Union Card of Digital City-General Technology Requirements,
China Standard GB/T 31 778-2015.

[6] Specification for Contactless ePurse Application (CEPAS), Singapore
Standard SS 518:2014.

[7]1 Contactless Pre-Paid/Post Pay IC Card User Card, Korea Standard KS
X 6924:2009.

[8] CIPURSE V2 - Operation and Interface Specification, OSPT Standard
2.0.

[91 W.Rankl and W. Effing, Smart Card Handbook. Hoboken, NJ, USA:

Wiley, 2010.

T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining

smart-card security under the threat of power analysis attacks,”

IEEE Trans. Comput., vol. 51, no. 5, pp. 541-552, May 2002.

F. Dang, P. Zhou, Z. Li, E. Zhai, A. Mohaisen, Q. Wen, and M. Lji,

“Large-scale invisible attack on AFC systems with NFC-equipped

smartphones,” in Proc. IEEE INFOCOM, 2017, pp. 1-9.

E-Card Tapper. [Online]. Available: http://www.wandoujia.

com/apps/com.siodata.uplink, Accessed on: Jul. 20, 2016.

Apktool—A tool for reverse engineering android APK files.

[Online]. Available: https://ibotpeaches.github.io/Apktool/,

Accessed on: Jul. 21, 2016.

PostGIS-Spatial and Geographic Objects for PostgreSQL. [Online].

Available: http:/ /postgis.net/, Accessed on: Jul. 21, 2016.

A. Carroll and G. Heiser, “An analysis of power consumption in a

smartphone,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf.,

2010, pp. 21-21.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.5, MAY 2019

C. J. Mitchell, “On the security of 2-key triple DES,” IEEE Trans.
Inf. Theory, vol. 62, no. 11, pp. 6260-6267, Nov. 2016.

E. Barker, Recommendation Key Manag. Part 1: General. Gaithers-
burg, MD, USA: United States National Institute of Standards and
Technology, 2016.

P. Karn, P. Metzger, and W. Simpson, The ESP triple DES trans-
form, RFC 1851, (1995). [Online]. Available: http://tools.ietf.org/
html/rfc1851

EMVCo, Integrated Circuit Card Specifications for Payment Systems-
Book 2: Security and Key Management, (2011). [Online]. Available:
https://www.emvco.com/document-search/

Visa payWave. [Online]. Available: https://usa.visa.com/pay-
with-visa/featured-technologies/visa-paywave.html, Accessed
on: Jul. 20, 2016.

MasterCard Contactless. [Online]. Available: http://www.
mastercard.com/contactless/, Accessed on: Jul. 21, 2016.

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang,
“High-speed high-security signatures,” |. Cryptographic Eng.,
vol. 2, no. 2, pp. 77-89, Sep. 2012.

G. P. Hancke, “A practical relay attack on ISO 14443 proximity
cards,” Comput. Lab., Univ. of Cambridge, Cambridge, UK, Tech.
Rep., vol. 59, pp. 382-385, 2005.

G. P. Hancke, K. E. Mayes, and K. Markantonakis, “Confidence in
smart token proximity: Relay attacks revisited,” Comput. Secur.,
vol. 28, no. 7, pp. 615-627, Oct. 2009.

L. Francis, G. Hancke, K. Mayes, and K. Markantonakis, “Practical
NFC peer-to-peer relay attack using mobile phones,” in Proc. Int.
Workshop Radio Freq. Identification: Secur. Privacy Issues, 2010,
pp- 35-49.

L. Francis, G. Hancke, K. Mayes, and K. Markantonakis, “Practical
relay attack on contactless transactions by using NFC mobile
phones,” in Proc. Workshop RFID IoT Secur. Asia, Nov. 2012,
pp- 21-32.

R. Verdult and F. Kooman, “Practical attacks on NFC enabled cell
phones,” in Proc. Int. Workshop Near Field Commun., Feb. 2011,
pp- 77-82.

M. Roland, J. Langer, and J. Scharinger, “Relay attacks on secure
element-enabled mobile devices,” in Proc. IFIP Int. Inf. Secur.
Conf., 2012, pp. 1-12.

M. Roland, J. Langer, and J. Scharinger, “Applying relay attacks to
Google wallet,” in Proc. Int. Workshop Near Field Commun.,
Feb. 2013, pp. 1-6.

E. Lee, “NFC hacking: The easy way,” presented at DEFCON 20
Hacking Conf., Las Vegas, USA, 2012.

T. Korak and M. Hutter, “On the power of active relay attacks
using custom-made proxies,” in Proc. IEEE Int. Conf. RFID,
Apr. 2014, pp. 126-133.

F. Dang, P. Zhou, Z. Li, and Y. Liu, “NFC-enabled attack on cyber
physical systems: A practical case study,” in Proc. IEEE INFO-
COM Workshops, 2017, pp. 289-294.

W. Gu, L. Shangguan, Z. Yang, and Y. Liu, “Sleep hunter:
Towards fine grained sleep stage tracking with smartphones,”
IEEE Trans. Mobile Comput., vol. 15, no. 6, pp. 1514-1527, Jun. 2016.
X. Chen, X. Wu, X. Y. Li, X. Ji, Y. He, and Y. Liu, “Privacy-aware
high-quality map generation with participatory sensing,” IEEE
Trans. Mobile Comput., vol. 15, no. 3, pp. 719-732, Mar. 2016.

E. Haselsteiner and K. Breitfuf3, “Security in near field communi-
cation (NFC): Strengths and weaknesses,” in Proc. Int. Workshop
Radio Freq. Identification: Secur. Privacy Issues, 2006, pp. 12-14.

K. Paget, “Credit card fraud—The contactless generation,” in
ShmooCon, 2012. [Online]. Available: http://www.tombom.co.
uk/Paget-shmoocon-credit-cards.pdf

F. D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum,
R. Verdult, R. W. Schreur, and B. Jacobs, “Dismantling MIFARE
Classic,” in Proc. Eur. Symp. Res. Comput. Secur., 2008, pp. 97-114.
G. de Koning Gans, J.-H. Hoepman, and F. D. Garcia, “A practical
attack on the MIFARE classic,” in Proc. Int. Conf. Smart Card Res.
Adv. Appl., 2008, pp. 267-282.

N. Courtois, K. Nohl, and S. O’'Neil, “Algebraic attacks on the
Crypto-1 stream cipher in MiFare classic and oyster cards,” JACR
Cryptology ePrint Archive, vol. 2008, 2008, Art. no. 166.

The engineers in Qihoo 360 cracked BMAC. [Online]. Available:
http:/ /tech.sina.com.cn/i/2011-09-28/17166123872.shtml,
Accessed on: Jul. 20, 2016.

http://www.wandoujia.com/apps/com.siodata.uplink
http://www.wandoujia.com/apps/com.siodata.uplink
https://ibotpeaches.github.io/Apktool/
http://postgis.net/
http://tools.ietf.org/html/rfc1851
http://tools.ietf.org/html/rfc1851
https://www.emvco.com/document-search/
https://usa.visa.com/pay-with-visa/featured-technologies/visa-paywave.html
https://usa.visa.com/pay-with-visa/featured-technologies/visa-paywave.html
http://www.mastercard.com/contactless/
http://www.mastercard.com/contactless/
http://www.tombom.co.uk/Paget-shmoocon-credit-cards.pdf
http://www.tombom.co.uk/Paget-shmoocon-credit-cards.pdf
http://tech.sina.com.cn/i/2011-09-28/17166123872.shtml

Fan Dang received the BE degree from the
School of Software, Tsinghua University, in 2013.
He is currently working toward the PhD degree
in the School of Software, Tsinghua University.
His research interests include mobile computing
and security.

Ennan Zhai received the MPhil and PhD degrees
from Yale University, in 2014 and 2015, respec-
tively. He is currently an associate research sci-
entist with the Computer Science Department,
Yale University. His research interests mainly
include distributed system, applied cryptography,
and software verification.

Zhenhua Li received the BSc and MSc degrees
from Nanjing University, in 2005 and 2008, and
the PhD degree from Peking University, in 2013,
all in computer science and technology. He is an
assistant professor with the School of Software,
Tsinghua University. His research areas cover
cloud computing/storage/download, big data
analysis, content distribution, and mobile Inter-
net. He is a member of the IEEE.

Pengfei Zhou received the BE degree from the
Automation Department, Tsinghua University, in
2009 and the PhD degree from Nanyang Techno-
logical University. He is currently working as a
postdoctoral fellow with Tsinghua University. His
current research interests include mobile comput-
ing and security, localization, cellular network
communications, and NFC.

Aziz Mohaisen (M’05-SM’15) received the PhD
degree from the University of Minnesota, in
2012. He is currently an associate professor with
the Department of Computer Science and the
Department of Electrical and Computer Engineer-
ing, University of Central Florida. His research
interests include the areas of systems, security,
privacy, and measurements. He is a senior mem-
ber of the IEEE.

DANG ETAL.: PRICING DATA TAMPERING IN AUTOMATED FARE COLLECTION WITH NFC-EQUIPPED SMARTPHONES 1173

Kaigui Bian received the PhD degree in computer
engineering from Virginia Tech, Blacksburg, in
2011. He is currently an associate professor in the
Institute of Network Computing and Information
Systems, School of EECS, Peking University. His
research interests include mobile computing,
cognitive radio networks, network security, and pri-
vacy. He is a member of the IEEE.

Qingfu Wen received the BE degree from the
School of Software, Tsinghua University, in 2015.
He is currently working toward the MSc degree in
the School of Software, Tsinghua University. His
research interests include big data and mobile
computing.

Mo Li (M’06) received the BS degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, in 2004, and the PhD
degree from the Department of Computer Sci-
ence and Engineering, Hong Kong University of
Science and Technology, in 2009. He is currently
an assistant professor with the School of Com-
puter Engineering, Nanyang Technological Uni-
versity. His current research interests include
wireless sensor networking, pervasive comput-
ing, mobile and wireless computing, and etc. He
is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

